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Abstract

This paper investigates the role of novel and incremental innovation in biopharmaceutical markets.

Previous research focusing only on novel innovation�FDA-approved new molecules�has led to the con-

clusion that the pharmaceutical industry is in a �productivity crisis,� since R&D spending has increased

exponentially while FDA-approved new molecules have remained �at over time. I �nd that incremental

innovation�new drugs created by modifying existing FDA-approved molecules�accounts for 49% of

the health impact of new innovations, and productivity of pharmaceutical innovation has increased 30%

between 1980 and 2009 when considering the health impact of both novel and incremental innovations.

I construct and estimate a model of how �rms trade-o� between novel and incremental innovation to

predict future innovation trends, and I �nd that the productivity of new innovations will decline by 40%

during the 2010s.
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1 Introduction

The pharmaceutical industry is perceived to be in a �productivity crisis� because R&D spending has

grown exponentially while innovation, measured as new FDA-approved molecules, has remained relatively

�at over time.1 These trends have persisted since the 1950s and have received attention in recent years

as the number of new molecules fell by 60%, while R&D spending increased by more than 280% between

1996 and 2010. Figure 1 illustrates the stark contrast in perceived productivity between the top two R&D

industries in the US: computers, on the left, have experienced exponential returns to R&D spending while

pharmaceuticals, on the right, have experienced exponential declines in output per R&D dollar.

Figure 1: Pharmaceutical Productivity Crisis

I start with two simple, but important, observations. The �rst is that the productivity of pharmaceutical

innovation should be measured as the health impact of new innovations, not the count of new molecules.

Health impact incorporates three components: how widely the drug is used; adherence, or what fraction

of users take the drug as prescribed; and e�cacy, or the health impact per prescription conditional on

adherence.

The second observation is that incremental innovation is an overlooked, but increasingly important,

component of pharmaceutical innovation. There are two types of FDA-approved pharmaceutical innovation;

novel innovations are new molecules and incremental innovations are new drugs created by modifying existing

molecules. Incremental innovations represent a growing share of pharmaceutical innovation and utilization,

and I estimate here that they account for more than half of all nongeneric prescriptions. Incremental

innovations can generate value by: creating new drugs that use existing molecules to treat di�erent diseases;

changing the chemical formulation or active ingredient of a drug to increase the drug's e�cacy and reduce

1Examples include Pammolli et al. (2011), Hu et al. (2007), Munos (2009), and Scannell et al. (2012).
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side e�ects; creating combination drugs or reducing the number of pills or doses, which increases a patient's

adherence to a drug regimen; and creating new delivery methods for certain patients, such as pediatric and

elderly patients, who could not take the drug in its originally approved form.2

My main �nding of this paper is, contrary to previous �ndings, the productivity of pharmaceutical

innovation has actually increased by 30% between 1980 and 2009. This increase in productivity is driven by

incremental innovation, which I �nd accounts for 49% of the total health impact of new innovations during

the 2000s.

The response of pharmaceutical innovation to the spread of HIV/AIDS in the US illustrates the impact

of incremental innovation.3 From 1981 to 1992, the number of AIDS diagnoses in the US went from zero to

over 75,000 per year and the number of deaths per year exceeded 40,000 by 1997 (CDC, 2013). From 1987 to

1996, there were 11 new molecules produced to treat HIV/AIDS. However, this period of HIV treatments was

characterized by high mortality rates�the probability of surviving two years was 30%�and low adherence

rates, which ranged from 30% to 50%.4 Despite having treatments that increased life expectancy, the low

adherence rates were mainly due to the numerous and serious side e�ects caused by the drugs and the

di�cult-to-follow drug regimen. In 1997, previously approved drugs were combined into a treatment known

as highly active antiretroviral therapy (HAART), which drastically increased the probability of surviving

two years after diagnosis to over 60%; however, in the early years of this treatment, adherence rates were

only 55%�60% because many treatments featured a very di�cult drug regimen with serious side e�ects,

food interactions, pill refrigeration requirements, and �ve doses per day of 20 to 30 pills (Murphy et al.,

2003). By 2000, despite featuring the same top-selling molecules, incremental innovations improved HAART

treatments by combining existing molecules into drugs that reduced pill burden, creating new formulations

to eliminate food interactions and the need for refrigeration, and producing new dosage formulations that

allowed pediatric patients to take the drug. These innovations increased the probability of living two years

after diagnosis to over 80% and adherence increased to 65%�70% (Rebick and Walmsley, 2012). By 2006,

HAART treatments were replaced by combination treatments featuring a one-pill, once-a-day dosage due to

the combination of new molecules and additional incremental innovation on existing molecules. As a result,

treatment adherence for HIV increased to over 85%, and life expectancy continued to increase (Rebick and

2This de�nition does not include o�-label prescriptions, which are drugs prescribed for an indication that di�ers from the
indications they were approved by the FDA to treat. My de�nition also does not include the FDA's supplemental approvals,
which are generally labeling or manufacturing revisions. I do not include supplemental approvals because they do not have a
signi�cant e�ect on the e�cacy or adherence rate of the drug.
Incremental innovations are sometimes referred to as incrementally modi�ed drugs or IMDs. Incremental innovations are not

synonymous with me-too drugs, which are drugs that are chemically similar to existing drugs. Me-too drugs could be either
novel or incremental innovations.

3Appendix A provides a more detailed summary of the role of innovation in HIV/AIDS.
4All survival probabilities in this section are from Couzigou et al. (2007). Adherence rates are from Wall et al. (1995).
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Walmsley, 2012). In addition, new drugs have expanded the potential use for molecules created for HIV to

treat hepatitis B and C, and are being used in research for infectious diseases such as malaria.

I do two things in this paper. First, I construct a novel dataset to estimate the health impact of every

FDA-approved drug, where health impact incorporates the number of people taking the drug, the adherence

rate of the drug, and the e�cacy of the drug. I construct adherence rates and utilization measures for each

drug using prescription survey data from the Medical Expenditure Panel Survey (MEPS), and I estimate

e�cacy using measures of quality-adjusted life years (QALYs) from the Cost-E�ectiveness Analysis Registry

(CEAR) at Tufts University. Using these data, I �nd incremental innovation makes up 49% of the health

impact of new pharmaceutical innovation, and the share is growing over time. In addition, I �nd that the

productivity of both novel and incremental innovation, measured as the health impact of new innovations

divided by R&D spending, increased by 30% over the 1980s, 1990s, and 2000s. By contrast, productivity

measures that only use the count or health impact of novel innovations decrease over this time period.

The second thing I do in this paper is I construct and estimate a model of the dynamic trade-o� that

�rms face between investing in novel and incremental innovation. My model is based on the assumption

that incremental innovation is easier with a larger stock of novel innovation on which to expand, and harder

when more incremental innovation has taken place. I use this model to explain past trends and predict

future trends in pharmaceutical innovation. The model �nds that the increase in novel innovation during

the 1990s, mainly due to changes in FDA procedures, produced a signi�cant increase in the number of

incremental innovations during the 2000s.5 This increase, combined with a signi�cant increase in the health

impact per drug during this period, produced an increase in the productivity of pharmaceutical innovation.

However, the substitution toward incremental innovation during the 2000s means that there is a relatively

low stock of novel innovation, so incremental innovation will slow down during the 2010s. I predict that this

slowdown in the number of innovations, combined with the expected doubling in R&D spending over the

2010s, will produce a 40% decline in pharmaceutical productivity in the 2010s.

This paper provides the �rst systematic analysis of the health impact of incremental innovation in phar-

maceuticals and constructs a novel dataset to measure the health impact of new innovations, but relates to

several previous strands of work. There is a wealth of literature measuring pharmaceutical innovation as the

count of novel innovations, but it largely ignores the role of incremental innovation. This literature examines

how market size or insurance a�ects innovation (Acemoglu and Linn, 2004; Cerda, 2003; Blume-Kohout and

Sood, 2013), the cost of new innovations (DiMasi and Grabowski, 2007), and productivity in pharmaceuticals

5Berndt et al. (2005) �nd that the Prescription Drug User Fee Act (PDUFA) increased the number of novel innovations by
over 3% each year, following its approval in 1992. The FDA also expanded expedited approval in reaction to the spread of
HIV/AIDS and launched a fast-track program in 1997.
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(Pammolli et al., 2011; Hu et al., 2007; Munos, 2009; Scannell et al., 2012).6 Related papers also include

�ndings that one type of incremental innovation (new indications) makes up 70%�80% of drug utilization

in certain disease classes (Berndt et al., 2006), and argue that incremental innovation, in general, should be

considered when measuring R&D output (Cockburn, 2007).7

2 Understanding Incremental Innovation

In this section, I describe incremental innovation and how it a�ects health. I show that the health impact

of new innovations comes through three channels: number of users, adherence, and e�cacy. I also show

that incremental innovation is an important component of prescription utilization, accounting for over half

of all nongeneric prescriptions, and of pharmaceutical innovation, accounting for roughly three times more

innovation than novel innovation.

2.1 De�ning Incremental Innovation

Pharmaceutical innovations are new FDA approvals, which take two forms: novel and incremental innova-

tion. Novel innovations are new FDA-approved drugs whose ingredient is a previously unapproved molecule.

Incremental innovations are either new FDA-approved drugs created from an already existing molecule or

FDA-approved modi�cations to existing drugs. There are �ve types of incremental innovation: new dosage

form, new formulation, new combination, new indication, and new active ingredient.8

New Dosage Form

Changes in dosages comprise 60% of FDA-approved incremental innovations and can a�ect any of the

three parts of a dosage regimen: the dosage route (how the drug is administered, i.e., oral, injection, topical,

etc.), the dosage form (whether the drug is a tablet, capsule, solution, cream, etc.), and the dose amount

(how much of the active ingredient is in the drug, usually in milligrams). Route changes are the most

common type with 41% of dosage changes, and only 5% are small dosage amount changes.9

Dosage changes have two main e�ects. First, they can increase adherence�whether a patient takes

the medication as prescribed�by making drugs easier to take through reductions in pill burden, dosage

6Acemoglu and Linn (2004) may contain incremental innovation in their de�nition of nongeneric approvals, but since they
use unpublished FDA data, it is unclear how they de�ne nongeneric approvals.

7Cockburn (2007) discusses how incremental innovation should be considered when measuring R&D output. However,
he uses the term di�erently than I do. He refers to incremental innovation as supplemental new drug approvals (NDAs),
which are generally labeling revisions and changes in, or additions to, the manufacturing process. I only refer to incremental
innovations as FDA-approved innovations using original NDAs, meaning that incremental approvals are newly approved drugs,
not supplemental changes to existing drugs. He also refers to new indications, formulations, and dosage, which are subsets of
my de�nition of incremental innovation.

8The classi�cation is listed by the FDA under chemical type.
9See Appendix B for a breakdown of what types of dosage innovations are most common.
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frequency, or side e�ects, or by changing the dosage route. Second, dosage changes can a�ect the number

of people taking a drug within a disease class by changing the dosage form, such as creating a solution

or injection form of the treatment instead of pills. This dosage form allows the treatment to be taken by

pediatric, elderly, and pregnant patients who are unable to take the treatment in the original form.

New Formulation

Changes in formulation are the second most common type of incremental innovation at 18% of FDA

incremental approvals. A drug's formulation is how the chemicals in the drug are combined to produce the

drug and is nearly identical to the drug's dosage form. HIV/AIDS treatments, such as Norvir, featured

changes in formulation that eliminated the need for refrigeration, reduced the number of drug and food

interactions, and provided extended release for drugs. These innovations a�ected adherence rates, because

they made drug regimens easier and also increased e�cacy by reducing drug and food interactions.

New Combination

The creation of combination drugs from existing molecules, a process that accounts for 12% of FDA

incremental approvals, played an important role in HIV/AIDS treatments. As combination drugs hit the

market throughout the HAART and CART phases, adherence was increased due to reduced pill burden. In

addition, combination drugs reduced potential drug interactions.

Some new combination approvals exist as separate drugs, which can be taken separately. However,

utilization rates for two active ingredients increase ninefold after the FDA approves them in a combination

drug.10 Since a drug can't be promoted for uses for which it is not approved, and since getting FDA approval

provides information on the e�cacy and side e�ects of combining the two drugs, information could play a

role in explaining why combinations are not widely used prior to FDA approval. Other new combinations,

such as those that combine drugs with devices, do not exist in the market prior to the combination approval.

New Indication

The fourth type of incremental innovation, new indications, makes up 6% of incremental approvals;

these take an existing drug and use it to treat a di�erent condition. Each FDA-approved drug is approved

exclusively to treat a speci�c condition. If a drug can be used to treat a di�erent condition, then it can be

approved as a new indication. Doctors are allowed to prescribe any FDA-approved drug for any condition

they see �t, and o�-label prescriptions�a prescription for an indication for which the drug is not FDA-

approved�are a major component of drug sales. However, companies cannot promote drugs for a use that

10This estimate is based on the ten best-selling combinations in the MEPS dataset.
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is not FDA-approved, so there is an incentive for �rms to obtain new indication approval. Within a disease

class, a new indication has the same health impact as a novel innovation that increases e�cacy but does not

require the producer to invest over $1 billion to create a new molecule (DiMasi et al., 2003).

O�-Label Prescriptions

O�-label prescriptions occur when a doctor prescribes a drug in a di�erent manner from what was

approved by the FDA. They are incremental innovations in that they are changes in a drug from its original

approval, exactly like a new indication approval, except they do not have FDA approval. More than 20%

of all prescriptions are o�-label (Sta�ord, 2008). However, prescription companies cannot promote the use

of a drug for an indication for which it was not approved. In certain diseases, like HIV/AIDS, where the

disease spread quickly, the o�-label utilization can be higher. Brosgart et al. (1996) report that 80% of HIV

patients received at least one o�-label prescription during treatment.

New Active Ingredient

New active ingredients make up 4% of incremental approvals. These are drugs that contain the same

active moiety but include a di�erent enantiomer, racemate, salt, ester, complex, chelate, or clathrate. A

molecule may exist in two forms that are mirror images; these forms are known as enantiomers. Each

enantiomer may have very di�erent e�ects in a drug. A racemate is the combination of both enantiomers.

For example, Fetzima, an SNRI drug used to treat major depressive disorder, is an enantiomer of a previously

approved racemate milnacipran HCI with the brand name Savella, used to treat �bromyalgia. Both Fetzima

and Savella use the same molecule, but in di�erent orientations.

Active ingredients are also essentially the same in their impact as novel innovations, because they can

produce entirely di�erent drugs used to treat di�erent diseases.

2.2 Measuring Health Impact

The health impact of a drug is how much it increases patients' length and quality of life. As illustrated

in the previous section, innovations a�ect health through three channels: adherence, quantity measured as

the number of users, and e�cacy.

To derive the health impact of new innovations, I de�ne the health impact of drug j, hj , to be:

hj =
∑
y

qjyajej
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where qjy is the quantity measured as the number of users in year y, aj is the adherence rate of the drug,

and ej is the average e�cacy of the drug with adherence. If 100 people take a drug with a 60% adherence

rate that adds one QALY on average, then the health impact of the drug is 60 QALYs.11

Summing hj over the set of all drugs (D) produces the total health impact of all drugs in year y (Hy):

Hy =
∑
j∈D

∑
y

qjajej

To measure the increase in health impact produced by new innovations approved in year y, which is

how new innovations increase health impact relative to the standard of care (SOC) that existed before the

innovation, I construct ∆Hy:

∆Hy =
∂Hy

∂q
∆q +

∂Hy

∂a
∆a+

∂Hy

∂h
∆h

=
∑
j∈Dy

[∆qjajej + ∆ajqjej + ∆ejqjaj ]

where qj is the average quantity of drug j per year, ∆qj is how drug j changes the quantity relative to

the SOC, ∆aj is how drug j changes the adherence rate relative to the SOC, ∆ej is how drug j changes

e�cacy relative to the SOC, and Dy is the set of all drugs approved in y. Hence, the health impact of new

innovations is the sum of the e�ects of the change in the quantity, adherence, and e�cacy relative to what

was used before the innovation. For instance, if a drug innovation with 100 users and an e�cacy of one

QALY increases the adherence rate relative to the previous SOC by �ve percentage points, then the health

impact of that innovation is 0.05 ∗ 100 ∗ 1 = 5 QALYs. If that drug innovation had an adherence rate of 60%

and also increased e�cacy by 5%, then the health impact would be 5 + 0.05 ∗ 100 ∗ 0.6 = 5.3 QALYs.

2.3 Overall Trends in Incremental Innovation in the US

Incremental innovation has several features. First, it requires much less R&D per innovation. Although

it is hard to break down costs and R&D spending into novel and incremental innovation, the average novel

innovation takes roughly 20 times more capitalized costs or 10 times more R&D spending than the average

incremental innovation.12

11100 ∗ 0.6 ∗ 1 QALY = 60 QALYs.
12These estimates are based on dividing the count of incremental and novel innovations by cost estimates. DiMasi et al.

(2003) �nd that post-approval R&D is roughly 10% of capitalized costs or 25% of R&D, and Frank (2003) estimates that 30%
of R&D spending is used on new or modi�ed uses for an existing product.
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Second, while novel innovation remained pretty �at since 1980, except for an increase around 1996 that

may be due to the Prescription Drug User Fee Act (Munos, 2009), incremental innovation trended upward

since 1970 as shown in Figure 2.

Figure 2: FDA Approvals by Type

Third, the majority of consumed nongeneric prescription drugs are from incremental innovation, and this

fraction is rising quickly, as shown in Figure 3.

Figure 3: Incremental Innovation Fraction Share

9



Fourth, incremental innovation is adopted much more quickly than novel innovation. Using the MEPS

data, I �nd that 17% of novel innovations were purchased within �ve years of being approved, while 51% of

incremental innovations were purchased within the same period.

Fifth, patients with diseases experiencing increases in incremental innovation driven by Medicare Part D,

which greatly increased prescription insurance coverage for the elderly, have been shown to display decreased

physical di�culty, physical limitation, and mortality (Hult, 2014).

Sixth, incremental innovation requires less approval time (�ve to six years instead of around 10 to 12 years

for novel innovation) and gets less market exclusivity (three years versus �ve years for novel innovation).13

One important issue is whether pharmaceutical companies use incremental innovation simply as a method of

extending market exclusivity. I address this concern by examining whether the number of incremental inno-

vations changes around patent and exclusivity expiration dates. Figure 4 shows the fraction of incremental

innovations by number of years before or after the patent expires. Negative numbers are the number of years

before expiration and positive numbers are the number of years after expiration. I �nd that although the

number of incremental innovations increases just after a patent expires, this spike is not a major component

of incremental innovation. Exclusivity is a decreasing function of the expiration date.

Figure 4: Number of Incremental Innovation Approvals by Year, Before and After Patent or Exclusivity
Expires

3 Role of Incremental Innovation in Pharmaceutical Productivity

This section measures the health impact of new pharmaceutical innovations�how much health new

innovations add relative to existing drug treatments�and the productivity of pharmaceutical innovation�

13See Appendix B for more detail on the approval process of incremental versus novel innovations.
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the health impact per dollar of R&D spending. I �nd that the health impact of new innovations increased

3.5 times between 1980 and 2009 and incremental innovation is responsible for 49% of the health impact

in the last decade. In addition, the productivity of pharmaceutical innovations has increased 30% between

1980 and 2009.

3.1 Data

To construct health impact measures for every drug, I use four main datasets: the FDA's Drugs@FDA

website, the Medical Expenditure Panel Survey (MEPS), the National Ambulatory Medical Care Survey

(NAMCS), and the Tufts Medical Center Cost-E�ectiveness Analysis Registry (CEAR).

The FDA's website lists every FDA-approved drug by approval date, chemical type, and new drug

application (NDA) number. The chemical type identi�es whether an approval is a novel innovation (NME)

or an incremental innovation (new active ingredient, new dosage form, new combination, new formulation

or manufacturer, and new indication). Using the FDA's Orange Book, I map each FDA-approved drug

(identi�ed by an NDA) to National Drug Codes (NDCs), codes that uniquely identify drugs by manufacturer,

product code, and packaging.

Using the NDCs, I match the FDA data with observations from the MEPS. MEPS is a large-scale

collection of national representative surveys with detailed information on prescription utilization and demo-

graphics. The dataset is a panel with two years of data for each individual in the dataset. The prescription

data contains around 144,000 individuals and 3.5 million prescriptions per year, from 1996 to 2012. It col-

lects data on the individual taking the drug, drug name, NDC, ICD-9 disease category the drug is intended

to treat, and prescription date. This data matches to individual data �les in the MEPS, which contains

information on every medical condition an individual has, listed by ICD-9 disease category. I construct 19

disease classes based on the ICD-9 classi�cation and assign each drug to its primary disease class. The

disease classes are listed in Appendix C.

The National Ambulatory Medical Care Survey (NAMCS) is an annual survey of randomly selected

private-practice doctors that collects prescription data from 1980 to 2010.14 Each doctor is surveyed about

a random selection of their patient visits and lists all prescriptions, as well as the doctor's diagnosis listed

as an ICD-9 code. I map the ICD-9 code to the 19 drug classes listed in Appendix C. In all, there are 3.2

million prescriptions in the NAMCS data.

For the e�cacy measurement, I use the Tufts Medical Center Cost-E�ectiveness Analysis Registry

(CEAR). Hult and Philipson (2014) provide a detailed description of CEAR with an analysis of the trends

14There is no data from 1982 to 1984 or from 1986 to 1988.
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in the dataset.15 CEAR includes 1,377 pharmaceutical cost-utility analyses in the peer-reviewed medical

literature. It is intended to be a comprehensive dataset of all cost-utility articles analyzed by trained pro-

fessionals, who rate the quality of the study and provide information about the quality level and quality

relative to the standard of care found in the study. The dataset lists the drug's name or active ingredient;

the drug's disease class, which can be uniquely mapped into my 19 disease classes; and the year of the study.

The dataset includes studies from 1977 to 2011, with 11% of the studies coming before 2000. The year is

not necessarily the year the treatment variable became available, but since I aggregate all statistics within

a decade, the timing is not a signi�cant issue.

3.2 Measurement of Components of Incremental Innovation

I construct a dataset that measures the health impact of of each FDA-approved drug innovation from

1980 to 2009. Each drug innovation has six measurements that correspond to the six variables in the health

impact produced by new innovations:

∆Hy =
∑
j∈Dy

[∆qjajej + ∆ajqjej + ∆ejqjaj ]

Adherence

Adherence (aj) and quantity (qj) are measured from the MEPS.16 For chronic conditions�conditions

that persist across survey years�adherence for drug j is measured by drug persistence, which is the fraction

of patients who remain on drug j across both survey years. Individuals who switch to a di�erent drug are

omitted from the calculation.17 In other words, if 100 individuals �ll a prescription for drug j in their �rst

year of the survey, 80 of those individuals still have the condition in the second year of the survey, and 60

of those individuals �ll a prescription for drug j in the second year of the survey, then the adherence rate is

60/80 = 75%.

For conditions that do not persist across survey years, adherence for drug j is measured by a medical

possession ratio (MPR). MPR is the average fraction of days that a patient had his prescription �lled over

15I use the same data cleaning process as Hult and Philipson (2014).
16Appendix D has a more detailed description of the adherence calculation and a robustness check with di�erent adherence

speci�cations.
17The drug condition for adherence is measured by the ICD-9 condition. The denominator in the adherence calculation is

all individuals who took drug j in the �rst year of the survey, had the same ICD-9 condition in the second year of the survey
that drug j is intended to treat and did not switch from drug j to a di�erent drug to treat the same ICD-9 condition. The
numerator is the number of people who are in the denominator and also �lled a prescription for drug j in the second year of
the survey.
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the course of the survey. In other words, if the average person had his prescription for drug j �lled for 75

out of the 100 days the person was in the survey, then his adherence rate is 75%.

The average MPR is 70% and the average drug persistence rate is 74%, which is consistent with adherence

estimates in the literature (Briesacher et al., 2008). The average innovation increases adherence by four

percentage points.

Quantity

Quantity for drug j is measured as the number of users for that drug over the �rst 14 years the drug is on

the market. The measure is constructed from three components. The appendix discusses the details of the

quantity measurement and the data used. The �rst component is the total number of nongeneric, non-re�lled

prescriptions in year y, which is the number of people who take a prescription in year y multiplied by the

number of di�erent nongeneric drugs that person takes in year y. The second component is the share of this

total prescription measure that comes from each disease class in year y. The third component is the share

of each disease class that comes from drug j in year y.

Multiplying these three components together and summing them over the �rst 14 years after a drug's

approval creates an estimate of the number of people who take drug j.18 I measure quantity in this way

because I have to match data across two drug level datasets. This method eliminates any di�erence in

aggregate drug levels across the datasets that would in�uence health impact trends.

The �rst component, total prescriptions, mainly uses data from Census (2012). The second component,

disease class shares, uses data from NAMCS. The third component uses NAMCS data from 1980 to 1995

and MEPS data from 1996 to 2012. If a drug has been on the market for fewer than 14 years, then I use a

regression with drug �xed e�ects, �xed e�ects for the number of years since approval, and a year time trend

to predict future quantity.

As a simple example, consider drug j in disease class c that was approved in 1990. If one million, non-

re�ll prescriptions were �lled in 1990, 1% of those prescriptions were �lled for disease class c, and 10% of

disease class c prescriptions were for drug j, then there are 1,000 users for drug j in 1990. Summing over

this calculation for each year from 1990 to 2003 produces my measure of quantity.

E�cacy

CEAR contains a measure of the e�cacy of a drug in QALYs, a frequently used measure of the e�cacy of a

medical treatment. A QALY measures the increase in the quality and quantity of life that treatments provide

to patients. Since CEAR does not contain all FDA-approved drugs, I use the average quality measures within

18Table 6 in Appendix D shows why 14 years is a reasonable time frame and does a robustness check using 10 and 20 years.
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a disease class, broken into either novel or incremental innovation, as the estimate for qj .
19 The average

drug adds 0.3 QALY over the SOC, which is a 4% increase in quality.

Changes in Adherence, Quantity, and E�cacy

For the measures of how a drug changes adherence (∆aj), quantity (∆qj), and e�cacy (∆ej), I compare

the estimates for drug j relative to the treatment that would be prescribed if drug j had not been approved.

This counterfactual treatment can be thought of as the SOC that existed before drug j.

For adherence, the SOC is the adherence rate of the other already-approved drugs that treat the same

condition as drug j. Therefore, the change in adherence for drug j is the di�erence between the adherence

rate for drug j and the average adherence rate for drugs approved before drug j but are in the same disease

class as drug j.

The change in the quantity that results from drug j is the number of users for drug j minus the number

of users that drug j crowds out from other drugs and a disease class time trend. Crowd-out is measured as

the decrease in users by the other drugs in drug j's disease class after drug j hits the market.

For e�cacy, the SOC is determined in the cost-utility analysis and the change in quality from drug j is

directly measured in the CEAR data.

Approximately 30% of new innovations between 1980 and 2009 do not show up or do not have enough

observations to measure adherence and quantity with the MEPS data. These observation get the average

health impact within the disease class and innovation type.

3.3 Decomposition Results

With the adherence, quantity, and e�cacy estimates, estimating the health impact of new innovations

in year y (∆Hy) is straightforward. I estimate this measure for all new innovations in each decade (1980s,

1990s, and 2000s) and break them down into novel and incremental innovations. Table 1 lists the results.

Recall that the index measures the health impact added, not the level, so it tells us how much all new

innovations in the average year of a decade increased quality relative to the average novel innovation in the

1980s. The average health impact of novel innovation in 1980s is normalized to 1. The second and fourth

columns in Table 1 list the health impact of a novel innovation

(
∆HNy

∆HN1980

)
and an incremental innovation(

∆HIy
∆HN1980

)
relative to the health impact of a novel innovation in the 1980s.

19To identify whether a study is for a novel or incremental innovation, I match the CEAR study to all FDA approvals with the
same drug name or active ingredient. If a drug had an incremental innovation before the study year and the novel innovation
occurred more than ten years before the study, then I treat the drug as an incremental innovation. Otherwise, the drug is
treated as a novel innovation. See the Appendix for a robustness check on the ten-year time frame.
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y

Average
Health Impact
per Novel
Innovation

Novel
Innovations
Per Year

Average Health
Impact per
Incremental
Innovation

Incremental
Innovations
Per Year

Share of
Health Impact

from
Incremental

1980s 1.0 18.7 0.1 51.7 20%

1990s 1.5 30.6 0.3 53.4 23%

2000s 2.0 20.7 0.6 63.7 49%

Note: All health impacts are relative to a novel innovation in the 1980s. The health impact of a novel innovation is
∆HN

y /∆HN
1980. The health impact of an incremental innovation is ∆HI

y/∆HN
1980.

Table 1: Overall Gain Across Decades

By contrast, the health impact of a novel innovation in the 1980s is 1. In the 1990s, the 1.5 value in the

second column means that the average novel innovation in the 1990s produced 1.5 times the value of the

average novel innovation in the 2000s. The 0.1 value for an incremental innovation in 1980s means that each

new incremental innovation is worth 10% of the health impact of a novel innovation in the same decade.

Accounting for the number of new innovations of each type (there are 2.8 times more incremental than novel

innovations), incremental innovation accounts for 20% of the health impact of all innovations during the

1980s. Incremental's share rose from 20% to 49% over the three decades.

The three main takeaways from Table 1 are that incremental innovation accounts for 49% of the health

impact of new innovations, the health impact of innovations increased substantially over time, and incre-

mental innovation's share rose faster than novel innovation's share. Omitting incremental innovation would

not only underestimate the level, but also underestimate the trend in the health impact of innovation. This

table also shows that each novel innovation is more valuable than each incremental innovation. However,

there are two to three times more incremental innovations, which means that in recent years incremental

innovations accounted for just under half of the health impact of all innovations.

Share of Novel Innovation's
Health Impact

Share of Incremental
Innovation's Health Impact

E�cacy 27% 23%

Adherence 26% 29%

Quantity 47% 48%

Table 2: Overall Gain Broken into Components

Table 2 breaks down the health impact measure into how much is being driven by changes in the quantity,

e�cacy, and adherence. Although a new innovation's e�ect on e�cacy often gets the most attention, most of

the health impact from innovations comes from its ability to increase the quantity and the adherence. The

quantity is the biggest driving force in the health impact of innovation and adherence plays a major role in

the health impact of incremental innovations.
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3.4 Measurement of R&D Expenditures

To estimate productivity, I need estimates of the level of R&D spending that went into new innovations.

Pharmaceutical R&D comes from private companies and federal funding. Private measures are obtained

from PhRMA, a trade group that represents almost every major company in the pharmaceutical industry.20

They compile R&D measures from PhRMA companies from 1975 to 2012 provide a frequently used measure

of pharmaceutical R&D.21 Federal measures are obtained from the NIH budget appropriation estimates.

To adjust for in�ation, I used the NIH's Biomedical R&D Price Index, which is designed to measure the

change in the price of NIH biomedical research inputs, such as personnel services, supplies, and equipment.22

This index rose nearly twice as much as the CPI in�ation index since the 1960s due to increases in biomedical

prices.

The second necessary adjustment is to match R&D spending with its expected year of output. R&D

output and R&D spending do not occur in the same year; it often takes at least 14 years of investment before

an innovation hits the market. Therefore, I match R&D spending to R&D output by using an estimate from

Paul et al. (2010) of what fraction of a drug's total R&D is spent at each year of a drug's R&D life cycle.

By knowing how many innovations are in each year of the pipeline and measuring how much each year in

the R&D process accounts for total spending, I map pharmaceutical R&D into the year in which the drug

hits the market. See Appendix D for a more detailed description. My timing-adjusted R&D measure says

how much R&D went into the investments approved in a given year. If no investments were approved, then

the timing�adjusted R&D would be zero. If three innovations hit the market, then it would consist of an

estimate of what proportion of the total amount of R&D went into those three innovations over the past 14

years. This adjustement does not change the main �ndings of the paper.

3.5 Implied Productivity Trend

With estimates of R&D output measured in health impact and R&D spending, productivity is straight-

forward to measure since I de�ne it as the ratio of R&D output to R&D spending. Table 3 shows that,

for the 1980s, 1990s, and 2000s, the health impact of new innovations increased faster than R&D spending,

which means that productivity increased. New innovations from the 2000s were three and a half times more

valuable than the new innovations from the 1980s, and R&D spending increased nearly threefold over this

period. While the health impact of novel innovation grew over this period, productivity using only the health

20Until 2009, PhRMA counted all top 15 pharmaceutical R&D companies as members, but Roche is no longer a member
after merging with Genentech.

21See Scannell et al. (2012).
22Cockburn (2007) and Austin (2007) also use this index for adjusting pharmaceutical R&D.

16



impact of novel innovation declined. Productivity only increased when incremental innovation is included in

the productivity measurement.

y

Health Impact
of Innovations
(Relative to

1980)

Adjusted R&D
(Billions of

USD)

Adjusted R&D
(Relative to

1980)

1980s 1.0 18.8 1.0

1990s 2.6 34.9 1.9

2000s 3.5 50.1 2.7

Note: All health impact measures are relative to 1980: ∆Hy/∆H1980.

Table 3: Productivity of Pharmaceutical R&D

There are several forces that should make productivity gains di�cult, even with increasing technology;

these forces are discussed in the pharmaceutical literature. The �rst e�ect, the low-hanging fruit e�ect, says

the disease classes with the lowest cost of innovation (the lowest δj in my model) get innovation �rst. This

means that, in the future, companies will either have to compete in crowded low-cost disease classes or in

high-cost disease classes. This e�ect should push up the cost per innovation. The second e�ect is related:

since past innovation raised quality, future innovation has to have an increasingly higher quality level, which

raises the cost of innovation. An industry like computers and electronics doesn't experience the same e�ects,

because while the number of potential disease categories humans have is relatively constant over time, the

number of categories available to computers and electronics grows rapidly with innovation. Innovation in

this industry not only improves desktop computers, but creates new devices, from smartphones to tablets or

wearable electronics, that did not even exist as potential categories decades ago.

4 Calibrating the Future Importance of Incremental Innovation

In this section, I outline a model of a �rm's decision to invest in either novel or incremental innovation.

The model is based on fact that novel innovation is a necessary precursor to incremental innovation, and �rms

equalize the return between R&D spending on novel and incremental innovation. The return to incremental

innovation is proportional to the ratio of the stock of novel to incremental innovation. This ratio is a

measure of how cheap incremental innovation is to produce, since a higher stock of novel innovation makes

incremental innovation cheaper and a higher stock of incremental innovation makes incremental innovation

more expensive to produce. The coe�cient on this ratio, θ, determines the optimal share of novel and

incremental R&D spending.
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4.1 Model

The model I calibrate in this paper is based on the Schumpeterian growth model used by Acemoglu

and Linn (2004) since consumers have no preference over whether a drug is novel or incremental. The

key di�erence between their model and mine is that I add the interaction between novel and incremental

innovation, as opposed to just considering novel innovation. I build this interaction into the model by

requiring �rms to initially create novel innovation within a disease class. Once a �rm has a novel innovation

in a disease class, that �rm can innovate through incremental innovation.

The demand side of the model is exactly the same as in Acemoglu and Linn (2004). There are i ∈ I

individuals with j ∈ J disease classes with Cobb-Douglas preferences:

ˆ ∞
0

exp(−rt)[ci(t)1−γ(qj(t)xji(t))
γ ]dt

where r is the discount rate; xji is the consumption of drug j; ci(t) is a basic good that can be used for

consumption, production of xj , and R&D expenditures; and γ ∈ (0, 1).

The drug with the highest-quality qj in each drug class captures the entire market. Prices of the basic

good are 1, and prices of drugs are determined by the next-best drug, shown in Acemoglu and Linn (2004)

to be:

pj(t) = λ

since demand for drug j according to the Cobb-Douglas preferences is Xj(t) =
γYj(t)
pj(t)

.

A �rm may choose to invest in novel R&D (zNj ), which has a �ow rate of innovation (nj(t)) described

below, or the �rm may invest in incremental R&D (zIj ), which has a �ow rate of innovation (ij(t)):

nj(t) = δjz
N
j (t)

ij(t) = ζ(Nj(t), Ij(t))δjz
I
j (t)

The �ow rate is a measure of how many new innovations are approved in a year. Each �ow rate is a function of

δj , which is the factor that converts R&D into innovation and varies by disease class. Incremental innovation

has a second factor, ζ(Nj(t), Ij(t)), which is a function of the stock of novel innovation, Nj(t) =
∑t
s=0 nj(s),

and the stock of incremental innovation, Ij(t) =
∑t
s=0 ij(s), with

∂ζ(Nj(t),Ij(t))
∂Nj(t)

> 0 and
∂ζ(Nj(t),Ij(t))

∂Ij(t)
< 0.

In other words, the return on investing in incremental innovation is higher with a higher stock of novel

innovation, because there are more molecules from which to create incremental innovation, and it is negatively

related to the stock of incremental innovation, since already-approved incremental innovation crowds out
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future incremental innovation. The δj incorporates that it is easier to innovate in certain disease classes,

and this e�ect is assumed to be the same for both types of innovation. Appendix E works out the details of

solving the model.

When ζ(Nj(t), Ij(t)) = 1, �rms are indi�erent to the choice between novel and incremental innovation

and:

zIj + zNj =
δj(λ− 1)γYj − r

δj

If ζ(Nj(t), Ij(t)) < 1, then �rms only invest in novel innovation. R&D spending is zNj =
δj(λ−1)γYj−r

δj
, which

produces new innovations: nj = δj(λ− 1)γYj − r. Similarly, if ζ(Nj(t), Ij(t)) > 1, then �rms only invest in

incremental innovation. R&D spending under this scenario is zIj = ζ(Nj , Ij)
2 δj(λ−1)γYj−r

δj
which produces

new innovations: ij = ζ(Nj , Ij)(δj(λ− 1)γYj − r).

nj + ij = (δj(λ− 1)γYj − r)

If I assume a function form of ζ being proportional to the ratio of the stocks, ζ(Nj , Ij) = θ
Nj
Ij
, then I can

solve for the steady-state. The steady-state R&D spending and innovation �ows are:

zNj =
1

1 + θ

δj(λ− 1)γYj − r
δj

zIj =
θ

1 + θ

δj(λ− 1)γYj − r
δj

and

nj =
1

1 + θ
δj(λ− 1)γYj − r

ij =
θ

1 + θ
δj(λ− 1)γYj − r

In this steady-state, �rms invest θ
1+θ of their R&D on incremental innovation and 1

1+θ of their R&D on

novel innovation, which keeps the returns equalized between novel and incremental innovation and ζ(Nj , Ij) =

1.

These equations reveal three observations. First, �rms equalize the return between novel and incre-

mental innovation. If the stock of novel innovation is large relative to the stock of incremental innovation,
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ζ(Nj , Ij) > 1, then �rms get a higher return on incremental innovation and shift their resources to incre-

mental investment. This investment will reduce ζ(Nj , Ij) until novel and incremental innovation have the

same return. If the relative stock of novel innovation is low, then �rms will invest in novel innovation, which

raises ζ(Nj , Ij) and increases the return on incremental innovation in the future. The trade-o� depends on

the speci�c functional form of ζ.

Second, novel innovation is a bad proxy for innovation because novel and incremental innovation are pro-

duction substitutes in the short term. If a �rm has higher output in novel innovation in the previous period,

then it will choose to invest more in incremental innovation. It would appear as if innovation slows when

a �rm switches to novel innovation, but the �rm may actually have higher productivity. Consider PDUFA

in 1992, which made it easier to get drugs through the FDA approval process and increased innovations,

and especially novel innovations, for a short period in the mid-1990s. After the spike in novel innovations,

there was a higher incentive for �rms to invest in incremental innovations, which means that considering

only novel innovation underestimates productivity during this period.

Third, �rms do not invest when they have the highest-quality drug in the disease class. As a result,

if there is only one �rm investing in a particular disease class, then it will not crowd out its own highest-

quality drug by producing more innovations. As a result, novel stocks can build up across disease classes

when there isn't much competition. Orphan drugs, which treat disorders a�ecting fewer than 200,000 people,

are an example of a situation where there may not be competition within the disease class, so incremental

innovations are not funded.

4.2 E�ects of Policy and Demographic Changes

The model has several implications for innovation in the pharmaceutical industry and related public

policy. Demographic changes a�ect the incentive to create more aggregate innovation, but do not a�ect the

share of innovation that comes from novel or incremental innovation. An increase in market size can be seen

in the models as an increase in γYj . When market size increases, both novel and incremental innovation

increase. Since β does not increase, the relative share of novel and incremental innovation does not change.

This result also holds for changes in insurance coverage, such as Medicare Part D, which greatly increased

prescription insurance coverage for the elderly. Increases in prescription insurance coverage act exactly like

a change in market size and do not a�ect β or the relative share of novel or incremental innovation.

For policy changes that a�ect incremental and novel innovation di�erently, consider a factor (ρ), that

a�ects the �ow rate of novel innovation:
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nj(t) = ρδjz
N
j (t)

ij(t) = ζ(Nj(t), Ij(t))δjz
I
j (t)

where ρ = 1 with no policy change. As a result, the share of novel innovation is ρ
ρ+θ and the share of

incremental innovation is θ
ρ+θ .

Some policy changes a�ect ρ, such as the Orphan Drug Act. Since these drugs are more likely to be �rst-

in-class drugs and, as a result, have a signi�cantly higher rate of being new molecules, the Act increases the

rate of novel innovation more than incremental innovation (ρ > 1). If the lack of increase in novel innovations

is due to ine�ciencies or increased thresholds in the FDA approval or clinical trials program, then ρ < 1.

As a result, �rms will increase the relative share of incremental innovation. As incremental innovation

increases, its stock increases, reducing the return on future incremental innovation. As a result, while novel

innovation decreases initially, incremental innovation increases, diminishing any potential aggregate decrease

in innovation.

In recent decades, the pharmaceutical industry has been characterized by a large number of mergers

and acquisitions.23 These mergers a�ect the stocks of innovation, because two merging �rms combine their

stocks of novel innovations. The e�ect of mergers is ambiguous in the model, but they could have important

e�ects on innovation. Consider if large pharmaceutical �rms merged with smaller �rms after creating new

molecules. This type of merger occurs because larger pharmaceutical �rms have the resources and knowledge

needed to get this molecule through the long and expensive FDA-approval process. In this scenario, larger

�rms would then produce the incremental innovation once the drugs are approved. The e�ects of this merger

would be that larger �rms would seem less productive if only novel innovation were measured, and if the

health impact of future incremental innovation is not included, the health impact of the acquisition would

be undervalued.

5 Empirical

This section estimates the model outlined in the previous section. I �nd empirical support for the main

assumption of the model, which is that the �ow of incremental innovation depends on how much incremental

innovation has already been done on the stock of novel innovation. I �nd the optimal ratio of the stock

of novel to incremental innovation is 55%. As a result, if the ratio is below 55%, then �rms have a higher

23See Danzon et al. (2007).
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return to invest in novel innovation, and if the ratio is below 55%, then �rms have a higher return to invest

in incremental innovation.

5.1 Empirical Strategy

The model assumes that the �ow of novel and incremental innovation depends on the stocks of both types

of innovation, ζ(N, I). To test this assumption, I use the same functional form, ζ(N, I) = θNI , that I use

in the model. The theory assumes the �ow of novel innovation would be negatively impacted by the ratio,

and incremental innovation would be positively impacted by the ratio. The reasoning is that, if the stock

of novel innovation is high relative to incremental innovation, then there are higher returns to capturing the

lower-cost incremental innovation rather than investing in more novel innovation.

I test this assumption empirically using a model similar to the empirical strategy in Acemoglu and Linn

(2004), but I add the ratio of the stocks. In the speci�cation, innovation is measured as the number of FDA-

approved novel innovations in year group t and drug class c (nct) as well as the number of FDA-approved

incremental innovations (ict). Market size, which has been shown in several papers to a�ect innovation, is

included as potential market size,Mct.
24 Potential market size is a measure of the number of users multiplied

by their marginal willingness to pay, but it allows for changes in population and income while maintaining a

constant age pro�le of use and expenditures to deal with potential endogeneity issues.25 It is measured by:

Mct =
∑
a

uca · ιat

where uca is a time-invariant measure of the fraction of drug expenditures for individuals in age group a that

come from drugs in disease class c, and ιat is the income in age group a at time t.

The ratio of the stocks,
(
N
I

)
, is included as a determinant of the �ow of innovation and as a test of the

model. Year group controls are also included in µt, φc are class-�xed e�ects, and X ′ct represents any other

controls included in the estimation.

I construct a Poisson model for the count of new innovations incorporating these variables:

E[nct|φc, X̄c, n̄c] = exp(αn · logMct + βn ·
Nct
Ict

+X ′ct · θn + µn.t)

E[ict|φc, X̄c, īc] = exp(αi · logMct + βi ·
Nct
Ict

+X ′ct · θi + µi,t)̄ic

24Acemoglu and Linn (2004), Cerda (2003), Blume-Kohout and Sood (2013), and Hult (2014).
25Since the e�ect of market size is not of primary importance, see Acemoglu and Linn (2004) for a full description of why

this measure is used to deal with the potential endogeneity issue that higher-quality products will have larger market size.
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The estimates of interest are the coe�cients on the stock ratios (βn and βi). I expect βn to be negative

and signi�cant if the assumptions of the model are correct, and βi to be positive and signi�cant. However,

to obtain an unbiased estimate of the β's, I use the Hausman et al. (1984) transformation also used in

Acemoglu and Linn (2004). This transformation is used because the class-�xed e�ects cannot be estimated

consistently.

E[nct|φc, X̄c, n̄c] =
exp(αn · logMct + βn · NctIct

+X ′ct · θn + µn.t)∑T
τ=1 exp(αn · logMcτ + βn · NcτIcτ

+X ′cτ · θn + µn,τ )
n̄c (1)

E[ict|φc, X̄c, īc] =
exp(αi · logMct + βi · NctIct

+X ′ct · θi + µi,t)∑T
N=1 exp(αi · logMcτ + βi · NcτIcτ

+X ′cτ · θi + µi,τ )
īc (2)

Equations (1) and (2) are estimated by quasi-maximum likelihood (QML) with an observation being a

�ve-year-group for each disease class.26

5.2 Data

The data used to estimate the QML is similar to that used in Acemoglu and Linn (2004). The dataset

consists of six variables: income measures (ιat), the �ow of novel innovation (nct), the �ow of incremental

innovation (ict), the stock of novel innovation (Nct), the stock of incremental innovation (Ict), and drug

expenditure shares (uca).

Income data is measured by age group using the Annual Demographic File from the CPS for each year

from 1970 to 2010.27 The �ve age groups used are 0�4, 5�30, 31�60, 61�90, and 90-plus with family income

equally divided between family members. The �ow and stocks of innovation are from the FDA's Drugs@FDA

website. The FDA lists every FDA-approved drug by approval data, chemical type, and new drug application

(NDA) number. The chemical type identi�es whether an approval is a novel innovation (NME) or an

incremental innovation (new active ingredient, new dosage form, new combination, new formulation or

manufacturer, and new indication). Drug expenditures are measured using the MEPS and are matched

to the FDA data as discussed in Section 3. With this mapping between the FDA and MEPS dataset, I

categorize each drug into one of 19 drug classes (listed in Appendix D) that correspond to ICD-9 disease

categories.28 Drug expenditure shares are computed as the fraction of drug expenditures for individuals in

each of the �ve age groups, a, that come from drugs in each of the 19 disease classes.

26See Acemoglu and Linn (2004) for testing the e�ects of di�erent models, such as a linear model, and including lags and
leads using a similar model with similar data.

27The Annual Demographic File is also known as the March CPS �le.
28Drugs are classi�ed by the drug class that they most frequently treat.
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(1) (2) (3) (4)

Novel Novel Incremental Incremental

Ln Market Size 2.204* 2.294* 2.421* 2.322*

(0.355) (0.352) (0.208) (0.202)

Ratio of Novel to Incremental Stock -0.696* 0.377*

(0.349) (0.169)

Year Group 80-84 0.499* 0.544* 0.0809 0.0554

(0.155) (0.153) (0.0975) (0.0969)

Year Group 85-89 0.425* 0.486* 0.316* 0.288*

(0.139) (0.135) (0.0808) (0.0798)

Year Group 90-94 0.415* 0.498* 0.0152 -0.0297

(0.130) (0.124) (0.0831) (0.0805)

Year Group 95-99 0.491* 0.555* -0.0649 -0.0962

(0.113) (0.109) (0.0757) (0.0743)

Year Group 00-04 0.670* 0.696* 0.183* 0.171*

(0.0971) (0.0963) (0.0628) (0.0625)

Year Group 05-09 -0.468* -0.449* -0.206* -0.210*

(0.139) (0.139) (0.0752) (0.0751)

Observations 152 152 152 152

Estimated by quasi-maximum likelihood (QML) with Hausman et al. (1984) transformation. Huber-White robust standard
errors are reported in parenthesis. The dependent variable in columns 1 and 2 is the count of novel innovation approvals,
and in columns 3 and 4 is the count of incremental innovation approvals. Approval counts are from the FDA, market size is
from the MEPS and CPS. Estimates are weighted by total expenditure for the category in the MEPS. Year group 70-74 is the
omitted group and the coe�cients for Year Group 75-79 are not listed. Marginal E�ect listed.
* p < 0.05

Table 4: E�ect of Stock Ratio on Innovation

5.3 Results

The results are shown in the regression table below, with and without the ratio included. There are two

main results. First, the results provide empirical support for the assumption of the model that the �ow

of novel and incremental innovation depends on the stocks of each type of innovation. Second, the results

calibrate that the ratio of the stock of novel to incremental innovation should be 0.55.

Table 4 provides results for the estimation of the QML. The dependent variable is the number of novel

approvals in the �rst two columns and the number of incremental approvals in the last two columns. Columns

1 and 3 include the ratio of the stock of novel to incremental innovation, and columns 2 and 4 exclude it.

Errors for all QML estimates are corrected for heteroskedasticity with Huber-White.

Columns 1 and 3 show empirical support for the assumption of the model that the �ow of novel and

incremental innovation depends on the stocks of each type of innovation. The positive coe�cient on the

ratio says there are higher returns to incremental innovations when there are more novel innovations from
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which to innovate. The negative coe�cient on the ratio, when the dependent variable is the �ow of novel

innovations, says that there are lower returns to investing in novel innovation when there is more potential

to create incremental innovation.

The interpretation of the magnitude of these coe�cients is: if the ratio of novel to incremental stock

went up one unit from one more novel innovation, then novel innovation in the next �ve-year group would

be roughly 50% lower. Similarly, if the ratio went up one unit, the amount of incremental innovation in

the next year group would be 50% higher. These coe�cients produce a θ = 1.81, which means that, in the

steady-state, 65% of innovation is incremental and 35% is novel. These results produce a ratio of the stock

of novel innovation to incremental innovation of 0.55. As a result, this estimation presents evidence of the

assumptions of the model that the �ows of innovation depend upon the relative size of the stocks of each

type of innovation.

The coe�cients on market size are lower but similar to the coe�cients of 3.54 for novel innovation

found by Acemoglu and Linn (2004). They di�er because my estimation covers di�erent years of data. The

coe�cient on the year group 2005�2009 shows that innovation may be slowing down in recent years, although

the other year groups seem to feature a general increase in innovation over this period.

Table 5 includes a nonlinear version of the stock ratio, and a version including the level of the stocks

separately. Columns 1 and 2 of Table 5 show novel innovation exhibits concavity, while incremental innovation

does not. This result means that as the relative stock of novel innovation gets large, it has less e�ect on

the �ow of novel innovation. Firms will still engage in some novel innovation, even if they already have a

relatively large stock of it. Columns 3 and 4 in Table 5 show that the ratio of the stocks is a more important

determinant of innovation than the stocks are separately. The reason this ratio matters is that it measures

how much potential exists for novel innovations. If the stock of novel innovation is high, but most of the

novel innovation has already been captured�that is, the stock of incremental innovation is high�then the

returns to incremental innovation are low.

6 Predictions

In the health impact estimation, I found, contrary to the consensus in the literature, the productivity of

new pharmaceutical innovation increased by 30% from the 1980s through the 2000s. In this section, I use

my model calibrations to predict future trends in innovation. I �nd that the productivity of new innovations

will decline by 40% over the 2010s as a result of the relative decrease in incremental innovation and the

decline in the health impact per novel innovation.
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(1) (2) (3) (4)

Novel Incremental Novel Incremental

Ratio of Novel to Incremental Stock -1.413* 0.463

(0.493) (0.297)

Ratio Squared 0.234* -0.0274

(0.102) (0.0781)

Novel Stock 0.00113 -0.00123

(0.00136) (0.000931)

Incremental Stock -0.00486* -0.00485*

(0.00172) (0.000933)

Ln Market Size 2.158* 2.435* 3.649* 4.007*

(0.355) (0.211) (0.537) (0.304)

Year Group 80-84 0.478* 0.0841 0.542* 0.0406

(0.156) (0.0979) (0.154) (0.0971)

Year Group 85-89 0.400* 0.319* 0.483* 0.253*

(0.139) (0.0813) (0.135) (0.0800)

Year Group 90-94 0.375* 0.0211 0.545* -0.0110

(0.130) (0.0848) (0.125) (0.0807)

Year Group 95-99 0.463* -0.0608 0.597* -0.0776

(0.113) (0.0765) (0.110) (0.0745)

Year Group 00-04 0.657* 0.186* 0.687* 0.152*

(0.0971) (0.0632) (0.0964) (0.0625)

Year Group 05-09 -0.483* -0.205* -0.448* -0.217*

(0.139) (0.0752) (0.140) (0.0758)

Observations 152 152 152 152

Estimated by quasi-maximum likelihood (QML) with Hausman et al. (1984) transformation. Huber-White robust standard
errors are reported in parenthesis. The dependent variable in columns 1 and 2 is the count of novel innovation approvals,
and in columns 3 and 4 is the count of incremental innovation approvals. Approval counts are from the FDA, market size is
from the MEPS and CPS. Estimates are weighted by total expenditure for the category in the MEPS. Year group 70-74 is the
omitted group and the coe�cients for Year Group 75-79 are not listed. Marginal E�ect listed.
* p < 0.05

Table 5: E�ect of Stocks on Innovation
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6.1 Innovation Prediction

My model is based on the assumption that incremental innovation is easier to create with a higher stock

of novel innovation, and that incremental innovation is harder to create the more incremental innovation has

taken place. The estimates in the empirical section predict that 64% of innovation will be incremental and

36% will be novel during the 2010s. This result produces a ratio of the stock of novel to incremental of 0.55.

In 2005, the ratio of the stocks of novel to incremental innovation was 0.48 and, due to the high fraction

of incremental innovation during this time�partially due to PDUFA�the ratio dropped to 0.45 by 2010.

Since these stock ratios are below the steady-state estimate, the share of future novel innovation will likely

increase.

I predict the �ow of future novel and incremental innovation using the QML estimates. To obtain these

predictions, I start by projecting current trends in market size and total spending within a disease class.

Plugging these estimates into the empirical model with the estimated coe�cients predicts that the �ow of

novel innovation will increase from 20% of all innovation to 32% across the 2010s. I see evidence of this

increase in novel innovation from 2010 to 2013, since novel innovation increased by 17% while incremental

innovation decreased by 16% from the 2000s to the 2010s. I expect this trend to continue through the rest

of the 2010s.

These estimates assume no other factors a�ect innovation, such as changes in FDA procedures. As

evidenced by the year group coe�cients in the QML estimation, other factors can have a signi�cant e�ect

on innovation �ows.

6.2 R&D Prediction

R&D data can be projected using recent R&D spending measures and projecting current trends. I predict

timing-adjusted R&D spending will nearly double from the 2000s to the 2010s, as shown in Table 6, because

R&D spending has more than doubled from the late 1990s to the early 2010s and much of that R&D is going

to future innovations.

6.3 Health Impact per Drug Prediction

I predict the health impact per drug using the trends from 1980 to 2009. These trends predict a 45%

increase in the health impact per novel innovation between the 2000s and the 2010s and a 26% increase for

novel innovations. Assuming the same health impact per drug between the 2000s and 2010s would further

exacerbate the predicted decline in productivity.
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6.4 Health Impact Prediction

Putting these estimates together produces a projection that continues the estimates of Table 3 to include

predictions for the 2010s. This table shows that, barring signi�cant increases in the health impact per

innovation, there will be a signi�cant decline of 60% in the productivity of pharmaceutical innovation during

the 2010s. This decline is mainly driven by the enormous increase in R&D spending growth, but is also due

to the decrease in the number of innovations as a result of fewer incremental innovations. I predict fewer

incremental innovations because of the relatively low number of novel innovations during the 2000s.

y

Health Impact per
Drug (Relative to

1980)
Adjusted R&D

(Relative to 1980)
Incremental's Share of

Health Impact

1980s 1.0 1.0 20%

1990s 2.5 1.9 23%

2000s 3.5 2.7 49%

2010s 4.0 5.1 36%

Note: The estimate from the 2010s is a prediction.

Table 6: Projecting Future Trends

7 Conclusion

This paper investigates the role of incremental innovation in pharmaceuticals, which has largely been

ignored by previous literature. I �nd that 49% of the health gains from pharmaceutical innovation in the

last decade is due to incremental innovations. I also �nd that the pharmaceutical industry is not in a

productivity crisis when innovation is measured as the health impact of incremental and novel innovations,

but rather productivity increased 30% between 1980 and 2009.

Understanding the health impact of incremental innovations is important for several reasons. First, my

�ndings contradict the view that me-too drugs�drugs that are chemically similar to existing drugs�produce

little health impact and should be subject to less generous reimbursement. Although the literature generally

considers the novel innovation form of me-too drugs, I show that chemically similar drugs a�ect health

impact through adherence, number of users, and e�cacy.

Second, my �ndings present a more accurate picture of the trends in pharmaceutical innovation. These

trends show that the wealth of literature on the productivity crisis in pharmaceuticals undervalues innovation

by excluding incremental innovation. In addition, my model shows that novel and incremental innovation

act as production substitutes in the short term, so periods of low novel innovation, such as the 2000s, can

be periods of very high productivity in innovation overall.
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Third, my �ndings have direct health care policy implications. Changes in FDA policies that encourage

novel innovation, including PDUFA, the Orphan Drug Act, and fast-track programs, have the added bene�t

of encouraging incremental innovation in the future. Since the health impact of a novel innovation is roughly

equal to the health impact of the subsequent incremental innovations based on that molecule, measuring the

e�ect of these policy changes with novel innovation captures only half of their health impact. My model also

predicts that if there is a slowdown in novel innovation during the 2010s due to rising costs or regulatory

issues, then the impact on innovation will be nearly twice as costly because less novel innovation today makes

it harder to produce incremental innovation in the future.
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Appendix

A. Case Study of HIV/AIDS

I illustrate the role of novel and incremental innovation with a case study of the pharmaceutical industry's

response to HIV/AIDS.

HIV is a retrovirus that replicates in a host cell by utilizing the reverse transcriptase enzyme, which

converts its RNA genome into DNA in a process known as reverse transcription. HIV/AIDS treatments

consist of di�erent types of inhibitors that work by interfering with di�erent points of the HIV replication

process. Reverse transcriptase inhibitors (RTIs), which can take nucleoside (NRTIs) and non-nucleoside

(NNRTIs) forms, make up 68% of the market for antiretroviral medications. Protease inhibitors (PIs),

which make up 31% of the market for antitretroviral medications, work by interfering with the essential

protease enzyme that cuts long HIV proteins into shorter proteins. By inhibiting the protease enzyme, HIV

cannot successfully replicate and infect additional host cells. AIDS is the �nal stage of the HIV infection,

and successful treatments prevent HIV from reaching the AIDS stage.

The �rst case of AIDS was reported in 1981 and it was only in 1984 that the medical profession realized

HIV caused AIDS.29 From the mid-1980s until 1995, HIV/AIDS-related deaths skyrocketed until it was

the leading cause of death in 25- to 44-year-old men in the United States from 1992 to 1995.30 There are

four phases of treatments for HIV/AIDS that correspond to the introduction of highly active antiretroviral

therapy (HAART), which produced a major breakthrough in the treatment of HIV/AIDS (see Table 7).

These are the pre-HAART phase from 1987 to 1996, the early HAART phase from 1997 to 1999 just after

HAART became available, the late HAART phase from 2000 to 2005 which featured signi�cant improvements

to HAART treatments, and the CART (or combined antiretroviral therapy) phase from 2006 to 2014 which

features drugs that combine the di�erent HAART treatments into one combination pill.

In 1987, the FDA approved the �rst new molecule, or novel innovation, for the treatment of AIDS,

Retrovir, commonly known by its generic name, AZT. Initially, Retrovir was approved for high dosage

amounts and required high-dosage frequency; it had to be administered every four hours throughout the

day and night. The high-dosage level of Retrovir produced small increases in life expectancy for patients,

between several months to 1.6 years.31 The drug also had serious drawbacks. It produced serious side e�ects,

including serious blood problems (anemia and neutropenia), liver damage (hepatotoxicity), heart disease

(cardiomyopathy), and muscle weakness (myopathy). Drug resistance was very high, which meant that the

e�cacy of the drug decreased with usage, and having to take a dose every four hours made adherence very

29See FDA's HIV/AIDS Historical Time Line.
30CDC (2014).
31See Becker et al. (2007).
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di�cult. The increase in life expectancy was enough for many patients to tolerate the side e�ects, although

the adherence rate was incredibly low, with only 30%�50% of patients properly adhering. In addition, the

original approval of Retrovir was only available in capsule form, so pediatric patients and some elderly

patients could not take the drug.

Although it produced increases in life expectancy, the health impact of the novel innovation of Retrovir in

1987 reached a limited share of the HIV/AIDS population due to low adherence and restricted dosage forms.

Three subsequent incremental innovations expanded the population of the drug to include pediatric patients

and other patients who were unable to take capsules by approving an oral syrup form and an injectable form,

and provided a higher-dose pill, which reduced pill burden and dosage frequency.

Between 1991 and 1997, there was signi�cant novel innovation in HIV/AIDS treatments. Six additional

molecules were approved as RTIs and �ve molecules were approved as PIs. However, these new molecules had

little e�ect on patient outcomes because researchers did not know how to use them in e�ective treatments.

Pre-HAART
Early

HAART

Late

HAART
CART

Years 1987-1996 1997-1999 2000-2005 2006-2014

Medications
Retrovir
(AZT)*

Epivir and
Zerit*,

Viracept†,
Norvir‡

Epivir and
Zerit*,
Kaletra†

Altripa�

Adherence 30%�50% 55%�60% 65%�70% over 85%

Probability of Living 25 Years under 4% 50% 75% over 75%

Doses
6 per day,
12 pills

5 per day,
20�30 pills

2 per day,
8 pills

1 per day,
1 pill

Drug Toxicity Issues
√ √ √ √

High Drug Resistance
√

Serious Side E�ects
√ √

Drug Interactions
√ √ √

Food Interactions
√

Refrigeration
√

Sources: Survival Probabilities are from Lohse et al. (2007) and CART rates are estimated by combining Lohse et al. (2007)
and statistics from CDC (2013) that show HIV related deaths have fallen by over 65% between 2006 and 2010. Adherence rates
are from Wall et al. (1995) (pre-HAART), Murphy et al. 2001 (early HAART), and Rebick and Walmsley (2012) (late HAART
and CART). Early HAART pill counts are estimated from Ickovics and Meade (2002). Other pill counts are calculated from
FDA dosage information.

* NTRI
† PI
‡ PI Booster
� Combination Drug

Table 7: HIV/AIDS Treatment Phases
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By 1997, researchers realized that they could use the already-approved FDA molecules much more e�ec-

tively with HAART, a drug therapy that generally combined two NRTIs, a PI, and a PI booster. The PI

booster (Ritonavir) prevented other enzymes from metabolizing the PI. As a result of the new treatment,

the probability of living for 25 years if diagnosed with HIV at age 25 increased from less than 5% to 50%.32

However, the new treatment was very di�cult to take and continued to have signi�cant side e�ects. For

instance, early-period HAART treatments often required �ve doses per day with 20�30 pills per day. Some

HAART pills, such as Norvir, required refrigeration and had signi�cant food interactions so food could not be

consumed an hour before or two hours after taking medication. In addition, individuals could develop drug

resistance. As a result, adherence to early HAART treatments was only 55%�60%, even though adherence

was demonstrated to have enormous e�ects on longevity.

From 2000 to 2005, incremental innovations continued to improve HAART treatments. Although more

novel innovations occurred during this period, the most commonly used molecules (listed in Table 7) were

approved by 1997, but these molecules were being used in di�erent ways. PI drugs, such as Kaletra, had

boosters incorporated in them by 2000, so instead of taking two PI drugs, patients would only take one.

In addition, Kaletra had a new formulation that did not require refrigeration, had a higher absorption rate

which reduced side e�ects and pill burden, and did not have food interactions. The most common NRTI

drugs during this time were still Epivir and Zerit, but new NTRI combinations such as Combivir gained

market share and reduced pill burden.

From: Lohse et al. (2007)

Figure 5: HIV Probability of Survival If Diagnosed at 25

32Lohse et al. (2007).

32



While patients were taking more complicated drug regimens during the early HAART phase, which

included up to �ve doses and up to 30 pills per day, with pills refrigeration and food interactions, later

HAART treatments were much easier. Incremental innovations reduced the dosage regimen to only two

doses and around eight pills per day without food interactions or refrigeration, as well as fewer side e�ects.

These innovations increased adherence to 65%�70% and greatly increased life expectancy. The probability

of living 25 years after an HIV diagnosis increased from 50% during the early HAART phase to 75%.

These signi�cant changes in mortality and morbidity were mainly due to incremental innovations, since

the molecules used in the most common treatment had been around since before HAART treatments. It

was changes in drug dosage, combinations of existing molecules, and new drug formulations that produced

most of the change during the late HAART phase. Dosage changes increased adherence through reduced

pill burden, number of doses, and side e�ects. Dosage changes also expanded the potential number of users

by making drugs available to subsets of the population, such as pediatric patients, who could not take the

drug as it was originally approved. Combining existing molecules increased e�cacy through more e�ective

treatments and increased adherence through easier dosage regimens. New formulation increased adherence

and e�cacy by eliminating the need for refrigeration and reducing drug and food interactions.

Incremental innovation continued through the introduction of CART, or combination antiretroviral ther-

apy, during the 2006�2014 period. During this time, new drug treatments combined previously approved

molecules into a one-pill, once-a-day HIV treatment. Atripla, for instance, combined three RTIs (a molecule

originally approved in 1998 for Sustiva, a molecule approved in 2003 for Emtriva, and a molecule originally

approved in 2001 for Viread). These new combination pills increased adherence to over 85% and decreased

HIV-related mortality rates and morbidity.

The HIV/AIDS example shows that new molecules are a very important part of pharmaceutical inno-

vation. Without new molecules, it would be impossible to develop e�ective HIV treatments. However, the

creation of the molecules only provided part of the health impact of the innovation. When most of the most

important drugs were originally approved, they did not a�ect the outcomes of patients. Instead, incremental

innovation on those molecules unlocked a large amount of the health impact from innovation. Many of the

most commonly used NTRI and PI drugs in the late HAART phase hit the market at a time when an HIV

diagnosis carried a short life expectancy before HAART treatments. It wasn't until incremental innovation

modi�ed drugs and treatment regimens that HIV treatments saw a massive increase in quality and quantity

of life.
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B. Incremental Innovation Breakdown, Examples, and Approval Process

Dosage Change Breakdown

Table 8 breaks down dosage form innovations into four main classes: dosage route change (41% of

dosage form approvals), dosage form change (35%), dosage amount change (13%), and duplicates (11%).33

Duplicates are changes in dosage form that are identical to a drug sold by another company. For instance,

albuterol sulfate, used to treat asthma, was approved in the same dosage amount, route, and form by Teva

and 3M.

I break down each category into whether the FDA approval was granted priority status, and I further

classify dosage form changes and dosage amount changes. I categorize dosage form changes into whether the

change was between two forms that have a similar category or a di�erent category. Dosage form categories

include pills (tablets and capsules), inhalation (aerosols and sprays), topical (creams, lotions, gels, and

ointments), and liquids (solutions and concentrates). Fourteen percent of dosage form changes are within

a similar category (i.e., change from a tablet to a capsule, or cream to a lotion) while the rest are across

di�erent categories.

I de�ne dosage amount changes as either small changes (less than a 40% change from any previously

approved dosage amount) or large changes (more than a 40% change from a previously approved dosage

amount). Only 5% of all dosage form changes are small changes in the dosage amount. Instead, most of

these innovations are changes in the way the drug is taken or delivered, which can have a signi�cant e�ect

on the e�cacy and adherence of the drug.

Main Category Sub Category
Share of
Approvals

Adherence
E�ect

Quality
E�ect

Population
E�ect

Route (41%) Priority 9% Possible Yes Possible

Non-Priority 32% Yes Possible Possible

Dosage Form (35%) Similar Category 5% No No No

Di�erent Category 26% Yes Possible Possible

Priority 4% Possible Yes Possible

Dosage Amount (13%) Small Change 5% No No No

Large Change 7% Yes Possible Possible

Priority 2% Possible Yes Possible

Duplicate (11%) 11% No No No

Note: Share of approval for main categories sum to 100%. Share of approvals in sub categories sum to share of approval in
the main category.

Table 8: Dosage Form Breakdown

33Route change includes any innovation that had a route change, including those that also had dosage form changes or dosage
amount changes.
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Approval Process for Incremental Innovation

The FDA approval process di�ers between novel and incremental innovation. For a novel innovation to

be available for sale in the United States it must complete a process of clinical studies and FDA approval

which can take between eight and nine years on average.34 When a drug is developed, it starts by having to

pass a round of preclinical animal testing, followed by an Investigational New Drug application to the FDA.

If it passes these rounds, it then goes through three phases of clinical testing. The �rst phase tests the drug's

more frequent side e�ects, using 20 to 80 healthy volunteers, and takes 20 months on average. The second

phase uses hundreds of patients to test the drug's e�ectiveness and takes 2.5 years on average. The third

phase, which takes four years on average, uses thousands of patients to gather more thorough information

on the drug's safety and e�ectiveness. If the drug passes all three of these phases, then it goes to the FDA

for approval, which generally takes from six to ten months. Prior to approval, the FDA conducts meetings,

reviews the application, and reviews the drug's labeling and production facilities. If the FDA approves the

drug, it can be sold on the market, where it is subject to a �nal fourth phase of monitoring consisting of

safety checks once the drug is used by the wider market.

Unlike NMEs, which have a standard FDA approval process, the innovation process for incremental

innovation is not as standardized. It depends on what the innovation is and how it di�ers from what has

already been approved. It can take anywhere from months to the same timeline as an NME if full approval

is required. Hult (2014) �nds that it takes �ve to six years for incremental innovations to hit the market.

Patent and exclusivity rights also di�er between novel and incremental innovation. Novel innovations are

usually patented during clinical trials and the patent lasts for 20 years. Since patenting occurs before drugs

are approved, drugs generally have patent lengths of around 12 years. A patent prevents another company

from using what is patented, such as a molecule, but does not prevent a competing company from creating a

di�erent drug that competes with the patented drug. Exclusivity rights, which are generally awarded to both

novel and incremental innovation, prevent a competing company from introducing any drug with a similar

indication. Exclusivity rights are generally �ve years for a novel innovation, seven years for an orphan drug

(which treats a disorder a�ecting fewer than 200,000 people).

34All drug approval time averages are from Blume-Kohout and Sood (2013), which compares estimates across di�erent sources.
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C. Disease Classes

1
Infectious and Parasitic Diseases

(ICD: 001�139) 11
Diseases of the Genitourinary System

(ICD: 580�629)

2
Neoplasms

(ICD: 140�239) 12

Complications of Pregnancy, Childbirth, and
the Puerperium
(ICD: 630�679)

3

Endocrine, Nutritional and Metabolic
Diseases, and Immunity Disorders

(ICD: 240�279) 13
Diseases of the Skin and Subcutaneous Tissue

(ICD: 680�709)

4

Diseases of the Blood and Blood-Forming
Organs

(ICD: 280�289) 14

Diseases of the Musculoskeletal System and
Connective Tissue
(ICD: 710�739)

5
Mental Disorders
(ICD: 290�319) 15

Congenital Anomalies
(ICD: 740�759)

6
Diseases of the Nervous System

(ICD: 320�359) 16

Certain Conditions Originating in the
Perinatal Period
(ICD: 760�779)

7
Diseases of the Dense Organs

(ICD: 360�389) 17
Symptoms, Signs, and Ill-De�ned Conditions

(ICD: 780�799)

8
Diseases of the Circulatory System

(ICD: 390�459) 18
Injury and Poisoning

(ICD: 800�999)

9
Diseases of the Respiratory System

(ICD: 460�519) 19

External Causes of Injury and Supplemental
Classi�cation

(ICD: E and V)

10
Diseases of the Digestive System

(ICD: 520�579)

Table 9: Disease Classes

D. Data Appendix

Matching between Datasets

This section discusses merging between the di�erent datasets. I start with all original new FDA drug

approvals listed on the Drugs@FDA dataset. This de�nition does not include abbreviated new drug approvals

(generic drug approvals) and supplements to approvals (changes in labeling or manufacturing). Within

original approvals, I de�ne novel innovations as NMEs and incremental innovations as new active ingredients,

new dosage form, new combination, new formulation or manufacturer, or new indication. I do not include

drugs already marketed without an approved NDA or over-the-counter switches. I also do not include drugs

that are discontinued, which are drugs not listed in the FDA Orange Book. The FDA and FDA Orange

Book, therefore, match all FDA approvals from 1980 to 2009 that are not discontinued.
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Fraction that Match at
Drug Level

Fraction that Match at
Disease Class

FDA 100% .

FDA Orange Book 100% .

MEPS 71% 93%

NAMCS 59% 93%

CEAR . 93%

Match fractions are the fraction of FDA-approvals from 1980 to 2009 that match to drug
observations in the di�erent datasets. Drugs are matched to the MEPS by NDC and are
matched to the NAMCS by name. Periods indicate that the dataset is not matched at
that level.

Table 10: Fraction of 1980�2009 FDA Approvals that are Matched Across Datasets

There are 3,859 new innovations in the FDA dataset, 2,506 of which are from the 1980 to 2009 period. Of

the drug innovations in that period, 1,792 (71%) can be matched to drugs in the MEPS by NDC and 1,469

(59%) can be matched to drugs in the NAMCS data by name. The drug's disease class is determined by the

most common drug class listed in the MEPS and NAMCS data for which the drug is intended to treat. I

calculate this measure for the �rst �ve years after a drug is approved to avoid o�-label usage changing the

disease class. I use drugs.com�a comprehensive website with detailed information on over 4,000 prescription

drugs, over-the-counter medicines, and natural products�to determine the disease class for 271 drugs not

listed in the MEPS or NAMCS datasets. The remaining 181 drugs, or 7% of the FDA approvals from 1980

to 2009, cannot be matched to a disease class and are omitted. I assume that if the drug is not common

enough to show up in any of these datasets that its quantity is zero, which is equivalent to excluding it from

the dataset. The 93% of drugs that are matched all have a disease class.

I only match CEAR at the disease class level, where 93% of drugs are matched, corresponding to the

93% of drugs that have a disease class.

Quantity and Adherence Measurement

This section describes the quantity and adherence measurement in more detail. Quantity is a measure of

the number of prescription drug users over the �rst 14 years a drug is on the market. The quantity of drug

j in disease category c is constructed from three components:

qj,c =
∑

y∈[0,14]

Ny
N c
y

Ny

N j
y

N c
y

=
∑

y∈[0,14]

Nys
c
ys
d
y

Ny is a measure of the number of people in year y multiplied by the number of di�erent nongeneric drugs

that person takes in year y (i.e. the total number of nongeneric, non-re�lled prescriptions in year y), scy ≡
Ncy
Ny
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is the share of those prescriptions that come from disease class c in year y, and sdy ≡
Njy
Ncy

is the share of

disease class c that come from drug j in year y.

I measure quantity in this way because I have to match data across two drug level datasets. This method

eliminates any di�erence in aggregate drug levels across the datasets that would in�uence health impact

trends.

Ny is measured from Farnsworth and Soejarto (1985) and Census (2012), with missing years linearly

interpolated in between. Aggregate prescriptions increased by roughly 280% from 1980 to 2009. The disease

class shares, scy, are measured from NAMCS data. The drug level shares from 1996 to 2012 are measured

from MEPS data. From 1980 to 1995, measuring drug shares is more complicated because the NAMCS data

only lists drug name, which is not a unique identi�er of a drug innovation. Therefore, from 1980 to 1995, I

estimate the drug share by drug name in each year in the NAMCS. Then I divide this drug share across the

di�erent innovations that existed in that year and under that drug name, according to the relative share of

those innovations in the MEPS dataset.

The data sources are listed in Table 11.

Years Ny scy sdy

1980�1995
Census (2012) and Farnsworth

and Soejarto (1985)
NAMCS NAMCS and MEPS

1996�2012 Census (2012) NAMCS MEPS

Table 11: Data Sources for Quantity Measurement

For instance, consider Retrovir, which had four innovations: a novel innovation in 1987 and incremental

innovations in 1989, 1990, and 1995. To measure the drug shares in 1991�sdy ≡
Njy
Ncy

�I start by measuring

the number of people prescribed Retrovir in 1991 in NAMCS. Assume for illustrative purposes that 10%

of the disease class was prescribed Retrovir in 1991. Then I estimate what share of Retrovir went to each

di�erent innovation in the MEPS dataset. If an equal share of 25% of Retrovir prescriptions went to each of

the four innovations, then the drug shares of the four Retrovir innovations would be 3.3%, 3.3% 3.3%, and

0%.35 The 0% represents the drug innovation from 1995, which is not on the market in 1991, and the 3.3%

is the share of each of the three innovations on the market in 1991.

35.10 ∗ 0.25
0.25+0.25+0.25

= 0.033 = 3.3%
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Quantity

Year -0.208*

(0.00757)

Year Squared 0.0000519*

(0.00000189)

Drug Innovation FE Yes

Years Since Approval FE Yes

Observations 16213

R2 0.888

OLS with dependent variable of quantity measurement. Observation is a
drug-year.
* p < 0.05

Table 12: Quantity Prediction Regression

I measure quantity over the �rst 14 years a drug is on the market to control for the di�erent amount of

time di�erent drugs have data available. I use 14 years as the cuto� because as Figure 6 shows, quantity

drops o� after 14 years on the market. Table 13 provides a robustness check using 10 and 20 years, instead

of 14 years. For drugs that have been on the market less than 14 years, I project future spending with the

regression in Table 12. This regression uses year trends, disease class �xed e�ects, and years since approval

�xed e�ects to predict the future trend in quantity.

Figure 6: Number of Users as a Function of Years on the Market

Adherence is measured in two ways depending on whether the drug is used to treat chronic or non-chronic

conditions.36 Two-thirds of drugs in the dataset treat chronic conditions, de�ned as conditions in which at

36See Kaplan (2011) and Graden (2003) for discussions of measuring adherence with MEPS data.
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least 10% of users take the drug across multiple survey years. If the condition is chronic, then adherence

is measured as drug persistence, which is the fraction of patients who remain on drug j across both survey

years. This fraction is calculated for individuals who had the same ICD-9 condition in both years of the

survey that drug j was intended to treat for that individual.

If the condition is non-chronic, then adherence is measured as the medical possession ratio, or MPR.

MPR is the ratio of days supplied of a drug to the number of days in the survey. From 2010 to 2012,

days supplied was measured by the MEPS. Using the days supplied variable, I calculated the average days

supplied for each drug by the drug's quantity, form, and strength. If the drug does not have observations in

the MEPS between 2010 and 2012, then I use the average MPR for drugs with the same ICD-9, quantity,

form, and strength.

Drugs that are not matched to the MEPS or that are taken as needed use the average adherence rate

for drugs within their disease class. I do two robustness checks on the adherence measure in Table 13. I

do a speci�cation where adherence is only measured as drug persistence and one where adherence is only

measured as MPR.

Role of Adherence in CEAR E�cacy Measure

One issue with using cost-e�ectiveness analyses is that adherence is that adherence is not always separated

from the QALYs measure (see Rosen et al. (2009)). I do a robustness check to determine how much adherence

measures in QALY could a�ect the health impact.

For the health impact measures I use:

∆Hy

∆HN
1980

=
∑
j∈Dy

[
∆qjajej + ∆ajqjej + ∆ejqjaj

∆qN,80aN,80eN,80 + ∆aN,80qN,80eN,80 + ∆eN,80qN,80aN,80

]

where the N superscript and 80 subscript denotes the average health impact for a novel innovation from the

1980s.

For this exercise, I consider measurement error of the type ẽi = eiψ(ai), where e is the true measure and

ẽ is the measure observed in the CEAR data. In the extreme case, ψ(ai) = ai and adherence is measured

though both e and a.

∆Hy

∆HN
1980

=
∑
j∈Dy

[
∆qjajejψ(aj) + ∆ajqjejψ(aj) + ∆(ejψ(aj))qjaj

∆qN80a
N
80e

N
80ψ(aN80) + ∆aN80q

N
80e

N
80ψ(aN80) + ∆(eN80ψ(aN80))qN80a

N
80

]
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Notice that this e�ect shows up in both the numerator and the denominator, dampening the e�ect. If all

adherence rates were the same, then this e�ect would cancel out.

Table 13 provides a robustness check on the health impact measures considering the speci�cation where

ψ(ai) = ai.

Alternative Speci�cation Robustness

This section provides robustness checks on several alternative speci�cations. It provides four measures

over �ve alternative speci�cations. The four measures are how this speci�cation changes the measure of

health impact per novel innovation, health impact per incremental innovation, and total health impact

relative to the main speci�cation used in Table 1 and incremental innovation's share of health impact in the

2000s.

The �ve alternative speci�cations are measuring quantity over the �rst 10 years a drug is on the market,

measuring quantity over the �rst 20 years a drug is on the market, measuring adherence only by persis-

tence, measuring adherence only by MPR, and adjusting the calculations to allow for e�cacy to include the

adherence rate.

The measure of 1.5 in the second row of Table 13 says that under the alternative speci�cation of measuring

quantity over the �rst 10 years a drug is on the market, the change in the health impact per novel innovation

from the 1980s to the 2000s increased by 150% (or a ratio of 1.5). Under the main speci�cation, this measure

increased by 200%.

Speci�cation
Change in Health
Impact per Novel

Change in Health
Impact per
Incremental

Change in Total
Health Impact

Incremental's
Health Impact
Share in 2000s

Main Speci�cation 2.0 7.2 3.5 49%

10 Year Quantity 1.5 5.1 2.5 49%

20 Year Quantity 3.3 12.2 5.9 50%

Adhere. Only Persis. 1.8 7.4 3.3 50%

Adhere. Only MPR 1.4 6.6 2.6 49%

E�cacy includes Adh. 1.7 7.2 3.1 51%

Changes are measured as the ratio of the health impact from the 2000s to the health impact from the 1980s. A value of 2.0
for health impact per novel innovation means that the health impact of a novel innovation in the 2000s is twice as large as the
health impact of a novel innovation in the 1980s.

Table 13: Alternative Speci�cations

There are two main takeaways from Table 13. The �rst is that the only speci�cation that has a signi�cant

e�ect is how many years are considered for the quantity measurement. The reason this speci�cation matters

is that, for drugs approved later in the sample, up to 85% of the years in the quantity calculation are
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projections. Since the projection regression has a time trend in it, most of the increase in quantity is driven

by projection trends.

The second is that the share of the health impact that comes from incremental innovation is very consistent

across speci�cations. This measurement is so consistent because the di�erent changes a�ect the measurement

of both novel and incremental innovation, so they do not have a signi�cant e�ect on the share.

R&D Matching

This section outlines the method for matching R&D to the innovation year. The goal is to match the

spending with the health impact of the innovations produced from that spending. To accomplish this, I use

an estimate from Paul et al. (2010) of the fraction of R&D spending at each year of the innovation process

for an NME. Table 7 presents this R&D breakdown over time. Matching the number of innovations in each

year with their drug share over time and the fraction of R&D spending in each year with aggregate R&D,

produces a measure of how much R&D spending goes into the outputs in each year.

Figure 7: R&D Spending Per Year

E. Model Extras

The �ow rates of innovation:

nj(t) = δjz
N
j (t)

ij(t) = ζ(Nj(t), Ij(t))δjz
I
j (t)

create value functions for the highest-quality �rm for novel (Vj(t|qj)) and incremental innovation (Wj(t|qj)),

which are a function of the per-period pro�ts (πj(qj)) and the probability that another �rm innovates to a

higher quality level, reducing pro�ts to zero.
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rVj(t|qj)− V̇j(t|qj) = πj(qj)− δj
(
zNj (t) + ζ(Nj(t), Ij(t))z

I
j (t)

)
Vj(t|qj) (3)

rWj(t|qj)− Ẇj(t|qj) = πj(qj)− δj
(
zNj (t) + ζ(Nj(t), Ij(t))z

I
j (t)

)
Wj(t|qj) (4)

The zero-pro�t condition from free entry implies that:

δjVj(t|qj) = 1 (5)

ζ(Nj(t), Ij(t))δjWj(t|qj) = 1 (6)

if a �rm invests in either incremental or novel innovation. In addition, di�erentiating (5) and (6) with respect

to time tells us that:

V̇j(t|qj) = 0 (7)

Ẇj(t|qj) = 0 (8)

Plugging (5), (6), (7), and (8) into the value functions in (3) and (4) yields:

r

δj
= πj(qj)− zNj (t)− ζ(Nj(t), Ij(t))z

I
j (t)

r

ζ(Nj(t), Ij(t))δj
= π(qj)−

zNj (t)

ζ(Nj(t), Ij(t))
− zIj (t)

If ζ(Nj(t), Ij(t)) < 1, solving these equations gives us (omitting time and quality notation for simplicity):

zNj =
δj(λ− 1)γYj − r

δj

zIj = 0

which means:

nj = δj(λ− 1)γYj − r

ij = 0
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If ζ(Nj(t), Ij(t)) > 1, solving these equations gives us (omitting time and quality notation for simplicity):

zNj = 0

zIj = ζ(Nj , Ij)
2 δj(λ− 1)γYj − r

δj

which means:

nj = 0

ij = ζ(Nj , Ij)(δj(λ− 1)γYj − r)

F. Variables

hj Health Impact of drug j N Stock of Novel Innovation

Hy Health Impact of Drugs in y I Stock of Incremental Innovation

∆Hy Health Impact of New Innovations in y ζ Incremental Innovation Flow Rate Adj.

qj Number of Users for drug j V Value Function of Novel Innovation

aj Adherence rate of drug j W Value Function of Incremental Inn.

ej E�cacy of drug j π Pro�ts

∆qj New Inn. Change in Quantity zN Novel Inn. R&D

∆aj New Inn. Change in Adh. rate zI Incremental Inn R&D

∆ej New Inn. Change in E�cacy δ Innovation Flow Rate Adjuster

y Year M Expected Market size

n Flow of Novel Innovation X Regression Controls

i Flow of Incremental Innovation ρ Policy Counterfactual Adjuster

Table 14: Variables

References

Acemoglu, Daron and Joshua Linn, �Market Size in Innovation: Theory and Evidence from the Phar-

maceutical Industry,� Quarterly Journal of Economics, 2004, (3), 1049�1090.

Austin, David H, Research and Development in the Pharmaceutical Industry, Congressional Budget O�ce,

2007.

44



Becker, Gary, Kevin Murphy, and Tomas Philipson, �The Value of Life near Its End and Terminal

Care,� Technical Report, National Bureau of Economic Research 2007.

Berndt, Ernst R, Adrian HB Gottschalk, Tomas J Philipson, and Matthew W Strobeck, �Indus-

try Funding of the FDA: E�ects of PDUFA on Approval Times and Withdrawal Rates,� Nature Reviews

Drug Discovery, 2005, 4 (7), 545�554.

, Iain M Cockburn, and Karen A Grepin, �The Impact of Incremental Innovation in Biopharmaceu-

ticals,� Pharmacoeconomics, 2006, 24 (2), 69�86.

Blume-Kohout, Margaret E and Neeraj Sood, �Market Size and Innovation: E�ects of Medicare Part

D on Pharmaceutical Research and Development,� Journal of Public Economics, 2013, 97, 327�336.

Briesacher, Becky A, Susan E Andrade, Hassan Fouayzi, and K Arnold Chan, �Comparison of

Drug Adherence Rates Among Patients with Seven Di�erent Medical Conditions,� Pharmacotherapy: The

Journal of Human Pharmacology and Drug Therapy, 2008, 28 (4), 437�443.

Brosgart, Carol L, Thomas Mitchell, Edwin Charlebois, Rebecca Coleman, Steven Mehalko,

Jamie Young, and Donald I Abrams, �O�-Label Drug Use in Human Immunode�ciency Virus Dis-

ease,� Journal of Acquired Immune De�ciency Syndromes, 1996, 12 (1), 56�62.

CDC, �Mortality Slide Series,� 2013.

Census, �Statistical Abstract of the United States,� Government Printing O�ce, 2012.

Cerda, Rodrigo Andres, �Drugs, Population and Market Size.� PhD dissertation, University of Chicago,

Department of Economics 2003.

Cockburn, Iain M, �Is the Pharmaceutical Industry in a Productivity Crisis?,� in �Innovation Policy and

the Economy, Volume 7,� MIT Press, 2007, pp. 1�32.

Couzigou, Carine, Caroline Semaille, Yann Le Strat, Roselyne Pinget, Josiane Pillonel, Flo-

rence Lot, Francoise Cazein, Daniel Vittecoq, J-C Desenclos, Aids Survival Study Group

et al., �Di�erential improvement in survival among patients with AIDS after the introduction of HAART,�

AIDS care, 2007, 19 (4), 523�531.

Danzon, Patricia M, Andrew Epstein, and Sean Nicholson, �Mergers and Acquisitions in the Phar-

maceutical and Biotech Industries,� Managerial and Decision Economics, 2007, 28 (4-5), 307�328.

DiMasi, Joseph A and Henry G Grabowski, �The Cost of Biopharmaceutical R&D: Is Biotech Di�er-

ent?,� Managerial and Decision Economics, 2007, 28 (4-5), 469�479.

45



, Ronald W Hansen, and Henry G Grabowski, �The Price of Innovation: New Estimates of Drug

Development Costs,� Journal of Health Economics, 2003, 22 (2), 151�185.

Farnsworth, Norman R and Djaja Doel Soejarto, �Potential Consequence of Plant Extinction in the

United States on the Current and Future Availability of Prescription Drugs,� Economic Botany, 1985, 39

(3), 231�240.

Frank, Richard G, �New Estimates of Drug Development Costs,� Journal of Health Economics, 2003, 22

(2), 325�330.

Graden, Suzanne, �National Estimate of Cost of Illness for Hypertension and Non-Persistence with Drug

Therapy Using the Medical Expenditure Panel Survey.� PhD dissertation, The Ohio State University 2003.

Hausman, Jerry, Bronwyn H Hall, and Zvi Griliches, �Econometric Models for Count Data with

an Application to the Patents-R & D Relationship,� Econometrica: Journal of the Econometric Society,

1984, pp. 909�938.

Hu, Michael, Karl Schultz, Jack Sheu, and Daniel Tschopp, �The Innovation Gap in Pharmaceutical

Drug Discovery & New Models for R&D Success,� Kellogg School of Management, 2007.

Hult, Kristopher, �Measuring the Value of Incremental Innovation Using Evidence from Medicare Part

D,� Working Paper, 2014.

and Tomas Philipson, �How Does Technological Change in Health Care A�ect Quality-Adjusted Prices?

A Systematic Analysis,� Working Paper, 2014.

Ickovics, Jeannette R and Christina S Meade, �Adherence to Antiretroviral Therapy among Patients

with HIV: A Critical Link between Behavioral and Biomedical Sciences,� Journal of Acquired Immune

De�ciency Syndromes (1999), 2002, 31, S98�102.

Kaplan, Cameron, �Compliance and Copayments: The Case of Statins,� 2011.

Lohse, Nicolai, Ann-Brit Eg Hansen, Gitte Pedersen, Gitte Kronborg, Jan Gerstoft, Hen-

rik Toft Sørensen, Michael Vaeth, and Niels Obel, �Survival of Persons with and without HIV

Infection in Denmark, 1995�2005,� Annals of Internal Medicine, 2007, 146 (2), 87�95.

Munos, Bernard, �Lessons from 60 Years of Pharmaceutical Innovation,� Nature Reviews Drug Discovery,

2009, 8 (12), 959�968.

46



Murphy, Debra A, Moussa Sarr, Stephen J Durako, Anna-Barbara Moscicki, Craig M Wilson,

and Larry R Muenz, �Barriers to HAART Adherence among Human Immunode�ciency Virus�Infected

Adolescents,� Archives of Pediatrics & Adolescent Medicine, 2003, 157 (3), 249�255.

Pammolli, Fabio, Laura Magazzini, and Massimo Riccaboni, �The Productivity Crisis in Pharma-

ceutical R&D,� Nature Reviews Drug Discovery, 2011, 10 (6), 428�438.

Paul, Steven M, Daniel S Mytelka, Christopher T Dunwiddie, Charles C Persinger, Bernard H

Munos, Stacy R Lindborg, and Aaron L Schacht, �How to Improve R&D Productivity: The Phar-

maceutical Industry's Grand Challenge,� Nature Reviews Drug Discovery, 2010, 9 (3), 203�214.

Rebick, Gabriel and SL Walmsley, �Issues in Resistance, Adherence, and Comparative E�cacy of the

Single-Tablet Regimen Combination of Tenofovir, Emtricitabine, and Efavirenz in the Management of

HIV-1 Infection,� Virus Adaptation and Treatment, 2012, 4, 51�63.

Rosen, Allison B, Alicen B Spaulding, Dan Greenberg, Jennifer A Palmer, and Peter J Neu-

mann, �Patient Adherence: A Blind Spot in Cost-E�ectiveness Analyses,� American Journal of Managed

Care, 2009, 15 (9), 626�32.

Scannell, Jack W, Alex Blanckley, Helen Boldon, and Brian Warrington, �Diagnosing the Decline

in Pharmaceutical R&D E�ciency,� Nature Reviews Drug Discovery, 2012, 11 (3), 191�200.

Sta�ord, Randall S, �Regulating O�-Label Drug Use: Rethinking the Role of the FDA,� New England

Journal of Medicine, 2008, 358 (14), 1427�1429.

Wall, Tamara L, James L Sorensen, Steven L Batki, Kevin L Delucchi, Julie A London, and

Margaret A Chesney, �Adherence to Zidovudine (AZT) among HIV-Infected Methadone Patients: A

Pilot Study of Supervised Therapy and Dispensing Compared to Usual Care,� Drug and Alcohol Depen-

dence, 1995, 37 (3), 261�269.

47


