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Abstract

Efficient care requires that care be administered to patients who stand to benefit
most. Clinical risk scores are an increasingly common tool to achieve this. However,
scores typically summarize baseline risk absent treatment while clinicians would like
to know treatment effects. We make use of a large database of detailed clinical
records from the Veterans Health Administration to study anticoagulation treat-
ment choices and outcomes for patients with atrial fibrillation. We first document
that adoption of a popular guideline (the CHADS2 score) reshaped prescription
patterns. Next, we estimate how anticoagulation affects stroke and hemorrhage
across patients with different characteristics. We use variation generated by quasi-
random assignment of patients to physicians with different propensities to prescribe
anticoagulation to estimate a model which allows heterogeneous treatment effects
to vary flexibly with observable characteristics and allows for the possibility that
physicians are selecting patients into treatment based on unobservable treatment
effect heterogeneity. We use the model to compare patient outcomes under the
status quo, under strict adherence to standard risk scores and optimal risk scores,
and under discretionary adherence to standard and optimal risk scores. Optimal
guidelines have the potential to reduce stroke incidence by two thirds relative to
current practice, without increasing the rate of adverse side effects.
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1 Introduction

Recent advances in machine learning and genetics, as well as the widespread adoption of

electronic medical records, make possible more personalized assessments of the benefits

of alternative treatments (Collins and Varmus 2015). In at least one setting, the benefits

of better allocating a fixed number of diagnostic tests given patients’ medical history

were found to be five times as large as the benefits from ordering the right number of

tests for the population in question (Abaluck et al. 2014). In other words, the traditional

question of medical researchers - “which patients will benefit from treatment?” - may

have greater welfare consequences than the traditional question of health economists

- “do coinsurances or reimbursement lead physicians to treat too little or too much?”

But efforts to personalize medicine face a fundamental challenge: existing randomized

experiments are not powered to uncover heterogeneity in treatment effects and attempts

to do so using observational data are confounded by selection into treatment based on

unobservable determinants of outcomes.

We present a framework for estimating heterogeneous treatment effects given selec-

tion of patients into treatment by combining machine learning methods with an explicit

selection model identified based on quasi-random assignment of patients to physicians.

Current efforts at tailoring treatment plans center on the application of evidence-based

care guidelines. We first show that popular existing guidelines for the use of anticoagu-

lants to prevent stroke among atrial fibrillation patients impact treatment decisions. We

then use the machine learning causal effects framework to determine how these existing

guidelines impact health outcomes and to construct optimal guidelines. Finally, we con-

duct simulations comparing the status quo to strict adherence to existing and optimal

guidelines as well as discretionary adherence in which physicians integrate information

not observable in medical records into their treatment decisions.

Physicians typically construct guidelines by examining which of a small number of

clinically relevant factors best predict risk among untreated patients (e.g. Gage et al.

(2001)). There are three problems with this approach: first, treatment effects need not

be proportional to risk, and the patients who stand to benefit the most from treatment

are not necessarily those with the highest ex ante risk. If warfarin reduces one patient’s

stroke probability from 50% to 49% and a second patient’s stroke probability from

40% to 10%, the second patient benefits more. Second, a large number of covariates

are often observed with an exponentially larger number of possible interactions between

covariates, and existing procedures to select a subset of covariates to include in guidelines

are often ad hoc. Third, untreated patients are a selected sample in two respects. The
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relationship between patient characteristics and risk among untreated patients will not

yield a consistent estimator of patient risk absent treatment if those same characteristics

also impact the treatment decision. Additionally, treatment effects may themselves vary

with the propensity to treat, e.g. the first 10% of patients whom doctors decide to treat

with a given set of observables may benefit greatly while the last 10% may not benefit.

We attempt to solve all three of these problems. We identify treatment effects sep-

arately from risk by building on the jackknifed instrumental variables strategy used by

Aizer and Doyle (2013) and Kling (2006) which exploit random assignment of defendents

to judges to estimate the impact of sentencing. We argue that in the Veterans Health

Administration, patients are as good as randomly assigned to physicians and present

several balance tests which validate this assumption. Given random assignment, we

can estimate marginal returns by comparing outcomes among physicians with different

treatment intensities. Physician A treats 30/100 patients with a given set of comorbidi-

ties; physician B treats 20/100 patients. Assuming A and B would agree about which

patients should definitely be tested (an assumption we further investigate), comparing

outcomes between physicians A and B identifies the treatment effect among the marginal

patients treated only by physician A.

Unlike Aizer and Doyle (2013) and Kling (2006), we want to estimate how the benefits

of treatment vary flexibly with a large vector of observables. To do so, we extend the

method developed in Athey and Imbens (2015) for estimating treatment effects using

machine learning techniques under conditional random assignment to our setting with

instrumental variables.

It may still be the case that untreated patients with a given set of observables differ in

important ways from treated patients: perhaps some risk visible to the doctors (but not

visible to the econometrician) makes the untreated patients ill-suited for treatment. To

allow for this, we combine the above methods with a Roy model approach to estimating

treatment effects developed by Heckman and Vytlacil (2005) and applied to the problem

of estimating treatment effects in healthcare by Chandra and Staiger (2011) and Abaluck

et al. (2014).

The approach we develop can also be contrasted with the approach used by oper-

ations researchers and computer scientists to mine observational data in order to de-

termine which patients should be treated. A typical approach in those literatures is to

use sophisticated machine learning methods to match patients on observable character-

istics and then estimate treatment effects by comparing outcomes among treated and

untreated patients (e.g. Bertsimas et al. (2016)). This approach will fail to the extent

that physicians also select patients into treatment based on unobservables that are cor-
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related with outcomes. Our model can be thought of as supplementing this approach

with a selection correction. We continue to use the variation that comes from comparing

treated and untreated patients for a given set of characteristics, but we explicitly adjust

for the degree to which treated patients are unobservably different.

Our framework can also be applied to a wide variety of settings outside of medical

care. The problems of an employer deciding which applicants to hire to maximize

productivity, a bank deciding which consumers to loan to in order to minimize defaults or

colleges deciding which applicants to admit to maximize a known objective all share the

underlying features that we seek to address. One would like to estimate heterogeneous

treatment effects by comparing treated and untreated beneficiaries, but to do so one

must adjust properly for selection.

The paper proceeds as follows. Section 2 lays out the medical context and data; sec-

tion 3 provides results of our reduced form analysis; section 4 describes our econometric

model; section 5 reports our structural estimation results.

2 Clinical context and data

In this paper, we examine the decision to prescribe anticoagulation for patients with

atrial fibrillation. Atrial fibrillation is the most common type of heart arrhythmia; the

heart beats irregularly, causing palpitations, shortness of breath and weakness. Atrial

fibrillation is a leading cause of stroke, associated with over 450,000 hospitalizations

and 99,000 deaths each year (Ott et al. 1997). To treat patients with atrial fibrillation,

physicians must weigh the benefit of reduced stroke risk from anticoagulation against

the cost of increased hemorrhage risk. Anticoagulation guidelines recommend treatment

for patients with the highest risk of stroke as estimated by popular risk scores (Camm

et al. 2012; You et al. 2012; January et al. 2014), namely the CHADS2 score which

was first published in 2001, and the CHA2DS2-VASc score which was first published in

2009 (Gage et al. 2001; Go et al. 2003; Lip et al. 2010). Table 1 describes the CHADS2

risk score and associated practice guidelines.

Recent evidence suggests that only 40% of atrial fibrillation patients at high risk of

stroke are treated in accordance with the widely accepted risk score based guidelines

for atrial fibrillation (Glazer et al. 2007). Yet, whether these deviations from guidelines

lead to adverse patient outcomes is unclear for three key reasons.

First, the risk score guidelines may not place the optimal weights on each risk factor.

The CHADS2 and CHA2DS2-VASc are formulated to predict which patients are at high

risk for stroke; they do not necessarily predict how causal effects of anticoagulation vary
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across patients. If treatment effects are not in constant proportion to stroke risk, then

these guidelines may not target the patients with the greatest benefit from anticoagula-

tion. Differences between the stroke risk among a physicians specific patient population

and the often specially selected study population may also lead the weights on popular

risk scores to be an imperfect basis for care decisions.

Second, guidelines for atrial fibrillation are based solely on stroke risk and fail to

consider the competing risk of hemorrhage, while clinical practice must consider both

outcomes to optimize care.

Finally, simplistic risk scores omit myriad clinical and social factors that may affect

a patients expected benefit from treatment; doctors may apply information not in risk

scores better tailor their care. Some of these judgments could be codified with more

detailed guidelines, whereas others may be difficult to consistently describe or extract

and don’t lend themselves to easy inclusion in standardized guidelines.

This study relies on electronic health records from the Veteran’s Health Administra-

tion (VHA) to construct a detailed database of patients diagnosed with atrial fibrillation.

We have collected data on each patients clinical risk factors for stroke and bleeding, anti-

coagulation choice (warfarin or alternative treatment), and clinical outcomes (including

incidence of stroke and head bleed). For each physician in our sample, we will develop a

case history of his experiences treating atrial fibrillation. We will also identify groups of

doctors who practice within the same clinical location. These data are collected from the

VA Corporate Data Warehouse, which includes patient scheduling, inpatient and out-

patient visits, prescriptions, laboratory tests, diagnoses, and demographics. The data

span the years 2000-2014.

To identify patients with a new diagnosis of atrial fibrillation, we require patients

to have atrial fibrillation recorded on two separate visits at least 30 days but no more

than 365 days apart. Using both the inpatient and outpatient encounters, we record

each patients related health outcomes: stroke, intracranial hemorrhage, gastrointestinal

hemorrhage, and falls (which increase the risk of intracranial hemorrhage). Our sample

includes over 396,000 patients newly diagnosed with atrial fibrillation in the VHA over

a fifteen year period. This large sample size will yield greater statistical power than

is typically attainable in a randomized trial to investigate how treatment effects vary

across patients, depending on their risk factors.

We assign patients to the prescribing doctor by studying the first visit with a primary

care provider following diagnosis with atrial fibrillation. We assume that the doctor re-

sponsible for this visit is making the decision about whether to prescribe anticoagulants.

To capture whether or not anticoagulation is prescribed, we use prescription drug files
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derived from billing data. Prescription drug files allow us to capture patients other drugs

as well to account for the role of drug interactions in physician decisions and patient

outcomes.

We extract a detailed accounting of patients medical histories and risk factors related

to atrial fibrillation, stroke and hemorrhage. Using a three year history of all clinical

encounters with the VHA system, we will capture patients active medical conditions

by the ICD9 diagnosis codes associated with each visit. Key clinical considerations

for prescribing anticoagulation for atrial fibrillation include conditions in the CHADS2

score: congestive heart failure, hypertension, age over 75 years, diabetes, and stroke.

We augment these measures with additional clinical factors, including the Elixhauser

comorbidity set and additional variables identified from the medical literature as relevant

to stroke or bleed risk including fall risk, history of bleeds, and vision problems.

By using the rich electronic medical record data from the VA Corporate Data Ware-

house, we can go beyond coding diagnosis history through ICD9 codes. In particular, we

capture the results of common lab tests for INR and platelet levels which may be impor-

tant determinants of a patients suitability for anticoagulation. We can also construct

measures of patient compliance by measuring the consistency with which the patient

keeps previous appointments and continues to refill prescriptions as appropriate.

A limitation of our data set is that while we observe a record of all care delivered

within the VHA system, we do not capture care delivered outside the VHA. We address

this limitation in a few ways. Finally, we link VHA records to two sources of claims data

to capture care delivered outside the VHA system. We use Fee Basis data to identify

care paid for by the VHA but delivered elsewhere. Finally, we link Medicare claims

data to observe outcomes and diagnoses from care performed outside the VHA, for the

subset of the patient population above age 65.

Summary statistics are reported in Table 2, by CHADS2 score. Patients with

CHADS2 scores of 0 or 1 have the lowest average stroke rate and the lowest rates of

warfarin prescription. Stroke rate is increasing monotonically in CHADS2 score. Only

1.6% of patients scoring 0 have a stroke within 6 months of diagnosis; strokes are ten

times more frequent at the highest CHADS2 score, with 16.6% of patients experiencing

a stroke within 6 months. Notably, while warfarin is prescribed less often to patients

scoring 0 or 1, prescription rates do not increase monotonically with CHADS2 score.

Very high scoring patients are less likely to be prescribed warfarin than lower scoring

patients.

One possible explanation for this pattern can be seen in the average bleed rates also

reported in this table. The bleed rates increase with CHADS2 score, ranging from 2.5%
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of low score patients and increasing to 9.5% of patients with a maximum score of 6.

While some of the increases in observed bleed rate might be explained by the higher

rates of warfarin prescription (since warfarin increases the risk of bleeds), we see bleed

rates increasing even over CHADS2 score ranges where the warfarin prescription rate

is decreasing, e.g. from a score CHADS2 of 3 to 4 or from 5 to 6. It is possible that

even though these high scoring patients are at higher risk of stroke, they are also at

greater risk of this risky adverse event—bleeds—which limits prescription rates among

the highest risk patients. We will explore these patterns in more detail after estimating

heterogeneous causal treatment effects with our selection model.

3 Does the CHADS2 Score Impact Behavior?

Over our study period, growing awareness of the guidelines appears to have re-shaped

physician’s treatment of low risk patients. Popular guidelines recommend prescription

anticoagulants such as warfarin for all patients with a CHADS2 score greater than two.

Discretion is advised for patients with lower CHADS2 scores; the guidelines suggest that

prescription anticoagulants are not required for many of these lower risk patients.

We begin by exploring trends in warfarin use. In Figure 1, we observe that for

the first several years of our study, warfarin prescription rates were similar in levels and

trending along the same path for patients with high and low CHADS2 scores. Beginning

in 2008, prescription patterns for high and low risk patients diverge. There was a decline

in warfarin use for patients with low CHADS2 scores (and so low estimated risk of stroke)

relative to the trend for high score patients. These trends provide our first evidence that

CHADS2 diffusion may have led to reduced use of anticoagulation for low risk patients.

Figure 2 displays trends in mentions of the CHADS2 score in physician notes. Con-

comitant with the decrease in warfarin use for low scoring patients documented in Figure

1, we also find an uptick in mentions of the CHADS2 score beginning around 2008. Al-

though it was first published in 2001, the CHADS2 score appears to have been slow

to diffuse within the VHA. In 2002, 27% of doctors had mentioned the CHADS2 score

at least once in their clinical notes; by 2014 this rate had more than doubled, reach-

ing 63%. Perhaps more tellingly, the share of primary care visits for atrial fibrillation

patients mentioning the CHADS2 score increased from less than 1% to over 12%.

Figure 1 and Figure 2 provide preliminary evidence suggesting that the CHADS2

score impacted prescribing behavior. In Figure 1, we see that warfarin prescriptions for

patients with a CHADS2 score of 0/1 fell dramatically relative to warfarin prescriptions

for patients CHADS2 scores greater than 2 and that this fall precisely tracks the increase
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in CHADS2 score use recorded in Figure 2.

We can also explicitly examine how prescription behavior changes after a physi-

cian mentions the CHADS2 score in his notes for the first time, using a difference-in-

differences framework. Specifically, we test whether prescription patterns change differ-

entially for high risk patients relative to low risk patients, following the doctor’s first

CHADS2 mention. We assume that in the absence of a new awareness of the CHADS2

score, trends in prescription rates would be the same for high and low score patients,

conditional on doctor fixed effects, flexible time fixed effects (for each year-month and

day of the week) as well as our rich set of patient controls.

We construct a vector of relative year dummies indicating the year relative to the

doctor’s first mention of the CHADS2 score in their free-text physician notes for an atrial

fibrilation patient. Year 0 is the calendar year that includes the doctor’s first CHADS2

mention; negative years mark years prior to that mention; positive relative years mark

years afterwards. We then model the warfarin prescription decision for patient i treated

by doctor d at time t and relative year r as:

Warfarinidrt =
∑
r

β1r (CHADS2 >= 2)i

+
∑
r

β2r + αt + γd + xidδ + εidt

The regression controls for year-month fixed effects, day of the week fixed effects, doctor

fixed effects, and patient covariates (including all of the inputs into the CHADS2 score).

Results of this reduced form analysis are reported in Figure 3. For those patients for

whom physicians note the CHADS2 score, Warfarin prescriptions are about 7 percentage

points higher for patients with CHADS2 scores greater than 2 relative to patients with

low CHADS2 scores. This provides further confirmation that physicians respond to

new guidelines, incorporating them into their clinical practice and making consequential

changes to their treatment choices.

4 Treatment Effects and Guidelines

In this section, we estimate a model of treatment effects which we will use to assess how

strict adherence to existing and optimal guidelines would impact stroke rates for a given

number of bleeds. We also allow physicians to select into treatment those patients with

the highest expected return given unobservables. As a result, we can use the model

to ask how patients would be impacted given discretionary adherence to guidelines in
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which physicians weight observables appropriately but continue to use information in

unobservables to shape treatment decisions.

4.1 Model of Treatment Effects

Our goal is ultimately to estimate heterogeneous treatment effects accounting for selec-

tion. A naive approach would assume no selection on unobservables and compare treated

and untreated individuals for a given set of observables. We can instead estimate the

degree of selection on unobservables by observing how outcomes vary across doctors

with different propensities to treat patients with a given set of observables. Estimating

the model will require assumptions about how the degree of selection on unobservables

varies across patients with different observable characteristics.

We begin by laying out a version of the general model of treatment effects developed

by Heckman and Vytlacil (2005) - this model is without loss of generality. We then make

explicit the assumptions we will use to avoid the dimensionality problems presented by

the more general model. This is a generalization of the model used for treatment effect

estimation in healthcare by Chandra and Staiger (2011) and Abaluck et al. (2014).

We start with a standard potential outcomes framework. Denote by Y o
idc(0) the

outcome if patient i assigned to doctor d in clinic c is untreated and by Y o
idc(1) the

outcome if patient i is treated. In our setting, the outcome is o ∈ {Bleed, Stroke}.
We start by writing:

Y o
idc(0) = fo(xidc) + ηo0idc (1)

Y o
idc(1) = ho(xidc) + ηo1idc (2)

where E(ηo0idc|xidc) = 0 and E(ηo1idc|xidc) = 0. The average treatment effect is thus

go(xidc) = ho(xidc)−fo(xidc). This is the difference in outcomes if everyone with a given

set of observables went from being untreated to being treated. Let ∆ηoidc = ηo1idc− ηo0idc.
Doctors treat if and only if:

Bidc = g∗(xidc, zidc) + η′idc < 0 (3)

where E(η′idc|xidc, zidc) = 0) and zidc are variables which impact the decision to treat

but not outcomes, so E(ηo0idc|xidc, zidc) = E(ηo1idc|xidc, zidc) = 0.

Without further restrictions on g∗(xidc, zidc), this is a without loss of generality

descriptive model of the treatment decision. If for example, g∗(xidc, zidc) = gs(xidc) +
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gb(xidc) and η′idc = ∆ηsidc + ∆ηbidc, then doctors would be minimizing the sum of strokes

and bleeds. But we require no such assumption - g∗(xidc, zidc) and η′idc can have an

arbitrary relationship with the underlying treatment effects or be totally unrelated.

Then the probability of treatment is given by: P (Widc = 1|xidc, zidc) = P (Bidc <

0) = Hx(g∗(xidc, zidc)) where the function H is a monotonically increasing function

which depends on the distribution of η′idc (which in turn can vary arbitrarily with all

observable characteristics, including interactions with doctor and clinic). Then we can

write: g∗(xidc, zidc) = H−1x (P (Widc = 1|xidc, zidc). Let λo,+x (P (Widc = 1|xidc, zidc) =

E(ηo1idc|H−1x (P (Widc = 1|xidc, zidc) + η′idc < 0). The expected outcome among treated

patients is given by:

E(Y o
idc(1)|Widc = 1) = ho(xidc) + λo,+x (P (Widc = 1|xidc, zidc)) (4)

h0(xid) tells us the average likelihood of a stroke if we treated all patients with a

given set of observables (λo,+x (1) = 0 since E(η1idc|xidc, zidc) = 0. The slope of λo,+x (·) is

undetermined. When physicians treat more patients with a given set of observables, we

might see fewer strokes if the first patients treated are highest ex ante risk or more strokes

if patients have similar ex ante risks and the first patients treated benefit the most from

treatment. Additionally, doctors may fail to order patients based on treatment effects

(η′idc may bear no relationship to ∆ηidc).

Analogously, the expected outcome among untreated patients is given by:

E(Y o
idc(0)|Widc = 0) = fo(xid) + λo,−x (P (Widc = 1|xidc, zidc)) (5)

where λo,−x (P (Widc = 1|xidc, zidc) = E(ηo0idc|H−1x (P (Widc = 1|xidc, zidc)) + η′idc ≥ 0).

Now, fo(xid) gives us the average outcome if we left all patients untreated (formally,

when no patients are treated, λo,−(0) = 0 because E(η0idc|xidc, zidc) = 0). The slope of

λo,−(·) is once again indeterminate. Even if doctors appropriately order patients based

on treatment effects, when more patients are treated, the remaining untreated patients

might be lower risk, or they may be high risk but impervious to treatment.

Provided we observed sufficient variation in zidc such that the probability of treat-

ment ranged from 0 to 1 for every set of xidc, we could estimate the five equations above

(equations 3 and equations 4 and 5 for both strokes and bleeds) and this would recover

all treatment effects of interest. We could use these equations to determine how many

strokes and bleeds would occur for patients with any given set of observable character-

istics xidc as the probability of treatment for those patients went from 0 to 1 given the

way that doctors currently select on unobservables.
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To do so nonparametrically would require an unrealistic amount of data - we would

need to observe enough variation in zidc so that the probability of treatment ranged

from 0 to 1 for every set of patient characteristics for every doctor in our sample. In

our application, the instrument zidc will be constructed at the physician level so we

do not observe any within physician variation. To estimate the degree of selection on

unobservables using variation across physicians, we will need to restrict the degree to

which selection on unobservables varies across physicians (we also restrict how it varies

across patients to avoid the dimensionality problem that arises if we need to estimate

separate λ0,+(·) and λo,−(·) for every set of patient characteristics).

We make the following assumption:

Assumption 1. λo,+xidc = λo,+A(xi) and λo,−xidc = λo,−A(xi) where A(xi) is a known function of

patient characteristics.

In structural terms, this is an assumption about the distribution of η′idc, the unob-

servable term in the decision to treat equation. We are assuming that η′idc has the same

distribution for any set of observables such that A(xi) takes the same value. In our

baseline estimates, A(xi) gives quantiles of stroke risk conditional on xi. Thus, we are

assuming that patients with similar observable stroke risk have a similar distribution of

unobservable characteristics.

Because we do not observe a large number of patients with every set of patient char-

acteristics at every clinic let alone every physician, we assume that physician and clinic

fixed effects are additively separable in the treatment effects as well as the decision to

treat. Since patients are randomly assigned to physicians within clinics, the physician

fixed effects can be omitted in the outcomes equation (the variables zid allows the treat-

ment decision to vary with the fact that different physicians have different propensities

to treat identical patients). Thus, we assume:

Assumption 2. fo(xidc) = fo(xi) + θfoc

g0(xic) = go(xi) + θgoc

g∗(xidc, zidc) = g∗(xi, zid) + θg
∗
c

Finally, to facilitate estimation, we assume that the error term in the treatment

equation is i.i.d. and uniformly distributed so that we have:

Assumption 3. P (Widc = 1|xidc, zidc) = ĝ∗(xid, zid) + θ̂c

where the hats reflect the fact that ĝ and θ̂ are linear transformations of the underlying

structural parameters. Were it not for the assumption that θ̂c is additively separable,
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this assumption would be without loss of generality - changing the distribution of η′idc
would be equivalent to changing the shape of the function g∗(·). Because of the addi-

tive separability assumption, the uniform assumption is substantive - the relationship

between patient characteristics and treatment probabilities is assumed to be the same

for all clinics and to vary across clinics only by an additive constant.

4.2 Identification

Identifying the functions λo,+(·) and λo,−(·) requires constructing instruments zidc which

impact the probability of treatment but have no other direct impact on outcomes. In-

tuitively, the perfect experiment is one in which we take patients with a given set of

observables, sequence them based on physicians’ unobservable assessment of suitability

for treatment, and then examine how outcomes vary if we randomly treat different frac-

tions of patients: how does the number of strokes vary among treated and untreated

patients as we treat a greater fraction of patients?

The intuition for our instrumental variables strategy mirrors this thought experi-

ment. We construct instruments using each physicians’ propensity to administer war-

farin among all other atrial fibrillation patients treated by that physician. Given the

assumption of conditional random assignment of patients to physicians within clinics

and assuming monotonicity (a common ranking of patients based on unobservables),

we can identify treatment effects for each set of observables by comparing outcomes for

physicians who treat more or less within a given clinic.

Let d(i) denote all of the patients physician d considers other than patient i. A

simple approach, following Aizer and Doyle (2013), would be to construct:

Zidc =
1

nd(i)

∑
k∈d(i)

W̃kdc (6)

where W̃kdc = Wkdc − ĝ(xidc), the residual variation in Warfarin administration after

subtracting out the variation due to observables.

This instrument is inefficient because it does not appropriately account for the fact

that this propensity is estimated much more precisely for some physicians than others

because they have a greater number of patients, and it does not account for drift over

time. In Appendix A, we describe a more involved procedure to construct an efficient

estimator. This procedure constructs each physician’s propensities to treat in each

period (the jackknifed propensity in the current period) and then constructs a weighted

average of those propensities based on the covariance between each alternative period
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and the current period as well as the number of observations used in each period. This

alternative procedure increases the nR2 of our instrument by a factor of 2.

The validity of our estimation strategy requires that patients do not sort differentially

within a clinical site to doctors with different prescibing propensities. The institutional

setting of the VHA supports this assumption; patients are assigned to physicians ac-

cording to strict rotations and it is rare that care is transferred across doctors by patient

request or due to differential expertise within a clinical specialty.

We can also probe this assumption empirically by testing for differential sorting on

the basis of observable patient risk factors. To test for covariate balance, we regress

the value of our jackknife prescription propensity on a vector of patient characteristics,

including age, race, veteran status, and comorbidities included in the CHADS2 score.

The regression controls for year dummies, and day of week by hour by clinic site fixed

effects. Our identification argument is that patients are randomly assigned to doctors

within a clinical site, conditional on their scheduling preferences. By controlling for

day of week and hour of day at each clinical site, we are effectively removing variation

in patient sorting to doctors that is related to patient and doctor schedule availability.

Within a particular time slot, e.g. Mondays between 10-11 AM, and a clinical site,

e.g. the primary care practice at the Palo Alto VA Center, we assume that patients

are as good as randomly assigned. We exploit variation in the prescription propensities

of doctors prescribing at that site and schedule slot to identify the effect of warfarin

prescription on patient outcomes.

Table 2 presents balance tests for this instrument. We can see that observable

characteristics are extremely well-balanced across quantiles of the instrument, consistent

with our story that, conditional on clinic and date fixed effects, patients are randomly

assigned to physicians.

4.3 Estimation

To estimate the model we proceed as follows. First, we estimate the selection into

treatment equation, equation 3, which gives estimates of P (Widc|xidc, zidc). Second, we

estimate equations 4 and 5 given these estimates.

Consider first estimation of P (Widc|xidc, zidc). To estimate this, we proceed as

follows. First, we demean at the clinic level and estimate g∗(·) using the two-step

LASSO procedure described in Belloni, Chernozhukov, and Hansen (2014) including all

quadratic functions and interactions of the xidc variables as well as zidc. Finally, we

estimate the clinic fixed effects fixing the remaining coefficients in the model.

The second step in our estimation process is to estimate equations 4 and 5 given
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P̂ (Widc|xidc, zidc). We do so using an analogous procedure. First, we demean at the

clinic level to eliminate the θc variables. Next, we use the LASSO procedure in Belloni,

Chernozhukov, and Hansen (2014) to estimate f(xid, P̂ (Widc|xidc, c, d)). Finally, given

estimates of f(·), we estimate the clinic fixed effects as the means of Y o
idc − f̂(·).

5 Treatment Effect Estimates and Simulation Results

5.1 Heterogeneous Treatment Effects

In our first set of results, we explore the estimated treatment effects of our selection

model outlined above and contrast them with two alternative estimation procedures.

In the first set of alternative estimates, we assume warfarin causes a 60% relative risk

reduction from the patient’s baseline stroke risk absent treatment, since the randomized

clinical trials find that warfarin causes a 60% reduction in stroke risk on average. This

assumption of constant relative treatment effects underlies the current medical guidelines

which recommend treatment to patients with high CHADS2 scores: the CHADS2 score

was formulated to predict stroke risk among untreated patients and guidelines implicitly

assume that warfarin treatment effects are proportional to stroke risk.

The second alternative procedure reports naive LASSO estimates of the treatment

effect which do not correct for selection at all. These estimates apply machine learning

to select variables that interact with the treatment variable and to select control vari-

ables. In the absence of selection on unobserved patient characteristics, these estimates

should also recover estimates of heterogeneous causal treatment effects. This procedure

mimics the approach of the operations research literature which applies machine learn-

ing to estimate treatment effects without accounting for selection on unobservables (e.g.

Bertsimas et al. (2016)).

Figure 4 splits patients up into 10 deciles based on their predicted stroke risk absent

treatment (as estimated by our selection model). The figure then displays the average

treatment effect by decile of stroke risk as estimated by each of the three methodologies

described above: the structural model of selection, assumption of constant 60% relative

reduction in stroke, and the machine learning estimate without selection correction.

The figure reveals that the average treatment effect estimated with our selection

model track closely to the estimates derived assuming a constant 60% reduction in

stroke. This provides initial evidence that the basic premise of the CHADS2 score

guideline, although previously untested to our knowledge, may have been a reasonable

starting point. Stroke risk appears to predict the size of the average treatment effect

of warfarin. However, it is important to note two caveats to interpreting this graph
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as validation of the CHADS2 guideline. The first caveat is that the figure obscures

considerable heterogeneity in treatment effects within each bin of predicted stroke risk,

which an optimal treatment rule would consider. The second caveat is that we have

not yet considered bleeding treatment effects, which depending on their correlation with

stroke treatment effects, could lead to a different optimal treatment rule.

Further, it is notable that the average treatment effect estimated by our selection

model match closely to a simpler jackknife instrumental variables approach that uses

equation 6 to define the instrumental variable, and estimates the local average treatment

effect of warfarin within a standard instrumental variables framework. In the fourth

quartile of predicted stroke risk, the basic instrumental variable model estimates that

warfarin reduces stroke by 13 percentage points (standard error of 5.6 percentage points),

which is very close to the average treatment effect estimated in the top two deciles of

stroke risk by the machine learning selection model in Figure 4 (which predict stroke

reduction by 10.7 p.p. and 12.5 p.p., respectively).

By contrast, the machine learning estimates that do not account for selection con-

sistently underestimate the treatment effects at all deciles of stroke risk except the very

lowest decile. The direction of bias is consistent with a basic selection story whereby

patients at higher risk of stroke are more likely to be treated with warfarin. This com-

parison highlights the importance of accounting for selection within models that aim

to estimate heterogeneous treatment effects. Even when conditioning on a rich vector

of patient covariates drawn from a detailed electronic medical record, selection on un-

observables remains an important confounder for estimating causal treatment effects.

Applying estimates from the model without selection would lead to systematic errors in

treatment decisions, in particular suggesting suboptimally low levels of anticoagulation.

Figure 5 reports results from a similar exercise, now comparing the predicted average

treatment effect of warfarin on bleed risk across the three estimation strategies. The

selection model and naive machine learning estimation procedures remain similar to the

stroke case; the only difference is that bleed has been substituted as the outcome variable.

To contrast with the perspective of the medical guidelines, we assume a 2.5% increase

in bleed risk, taking the estimate from the randomized clinical trial and assuming it is

constant by decile of bleed risk.

The selection model finds evidence of substantial heterogeneity in bleed risk, sug-

gesting the importance of trading off heterogeneous effects of warfarin on bleed and

stroke as they vary with patient characteristics. While warfarin is estimated to increase

bleeds for patients at every decile of bleed risk, the average treatment effect is largest for

patients in the lowest decile of bleed risk absent treatment. The naive machine learning
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estimates again consistently underestimate the size of the treatment effect, even sug-

gesting that warfarin prescription reduces bleed risk for high risk patients. This runs

contrary to medical teaching and the estimates of our selection model, and likely results

from physicians selecting patients for treatment with warfarin who have lower bleed risk

due to factors unobservable by the econometrician.

Again, we uncover a close match between the local average treatment effect implied

by a basic instrumental variables estimate strategy and the average treatment effects

estimated in this model. The basic instrumental variable estimation of the LATE finds

that warfarin increases the risk of bleeds by 3 percentage points, which tracks closely

to the average treatment effects of the machine learning selection model in the bottom

two deciles.

5.2 Comparing estimated treatment effects to current guidelines

Next, we investigate how our estimated treatment effects correlate to the recommen-

dations of CHADS2 score guidelines. Table 4 reports average treatment effects esti-

mated with our machine learning model with selection correction by CHADS2 score.

First, we note that warfarin is estimated to reduce stroke risk by a larger amount at

higher CHADS2 scores. Again, this general pattern would at first seem to validate the

CHADS2 approach to guideline construction–patients at higher stroke risk as predicted

by CHADS2 score have the greatest benefits (in terms of stroke reduction) from war-

farin treatment. However, considering the bleed average treatment effects tempers this

conclusion considerably. While CHADS2 score does indeed predict stroke treatment

effects, it also appears highly predictive of bleed treatment effect. Since the CHADS2

score jointly predicts both the benefit (reduced stroke) and the cost (increased bleed)

of taking warfarin, its value as a treatment algorithm may be limited. Ideal treatment

guidelines need to balance stroke reduction with bleed increases.

Finally, Table 5 compares the variables that are predictive of stroke treatment effects

in our machine learning framework with the variables included in the CHADS2 and its

successor, the CHADS2-VASc. The LASSO procedure retains the age and stroke his-

tory variables as predictive of stroke treatment effects, which were also in the original

CHADS2 guideline. It also includes vascular disease, which was added to the guide-

line with the CHADS2-VASc amendment, suggesting this adjustment to the original

guideline may have been helpful in targeting warfarin to patients with the largest stroke

reduction. Our model also identifies four variables that are excluded from the CHADS2

and CHADS2-VASc but are predictive of stroke treatment effect–race, renal failure, fall

risk, and neurological disorders. From this analysis alone, it is not clear if the variables
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identified by our model are appropriate for treatment guidelines, because we have not

yet considered how they predict bleed effects.

To extend this exercise, we repeat now estimate our LASSO selection model with

the outcome variable that calculates the combined stroke treatment effect plus the bleed

treatment effect. A treatment guideline maximizing this outcome would minimize the

combined incidence of strokes and bleeds, and would be optimal if the welfare cost

of stroke and bleeds were equal. While this is a strong assumption which we will not

impose in the subsequent welfare analysis, it allows some initial insight into the guideline

construction process.

Variables that are the strongest predictors of treatment effect for stroke and bleed

events include congestive heart failure and stroke history, both of which were included

in the CHADS2 guidelines. Importantly, the sign of the congestive heart failure vari-

able actually reverses in our model relative to the CHADS2 guideline. The CHADS2

guideline suggests that patients with congestive heart failure should be more likely to

receive warfarin because they are likely to experience a larger decrease in stroke rate

with treatment. However, our estimates suggest that because congestive heart failure

is such a strong predictor of bleed treatment effects as well, these patients should be

less likely to receive warfarin if the aim of treatment assignment is to minimize stroke

and bleed events (with equal weight on each). The LASSO selection model also sug-

gests four new variables which could improve treatment targeting further: bleed history,

tumor, chronic pulmonary disease, which should all increase treatment likelihood and

neurological disorders, which should reduce the likelihood of treatment.

5.3 Guideline simulations

In this section, we use our estimates of heterogeneous treatment effects from the machine

learning selection model to consider a number of counterfactuals. Specifically, we want to

compare the stroke and bleed rates that would be associated with status quo treatment

decisions and contrast them with outcomes under strict adherence to the CHADS2

score and with treatment decisions that follow the optimal strict guideline based on our

estimated treatment effects. In ongoing work, we are applying our selection model to

analyze the benefits of discretionary adherence to guidelines, where physicians receive

guidance of the sort, “half of patients with these comorbidities should be treated,” and

physicians use discretion to select which individual patients within that set to treat on

the basis of unobserved characteristics.

To construct the optimal strict guideline, we consider minimizing the number of

strokes subject to a constraint that holds the total number of bleeds constant at the
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rate currently observed in our sample. We call the guideline “strict” because it assigns

warfarin to every patient or no patients within a given observable cell based on pa-

tient characteristics. It can be shown that the solution to this optimization problem

is achieved by assigning warfarin to patients with the largest ratio of stroke average

treatment effects divided by bleed average treatment effects, and continuing to assign

warfarin to patients with a declining value of that ratio until the expected bleed rate

equals the status quo bleed rate.

We apply cross validation techniques to avoid overfitting and thus overstating the

benefits of adherence to the optimal strict guidelines. Specifically we identify the treat-

ment rule given results estimated on half of our sample, which has been randomly

assigned as the ”training” data set. We then evaluate the benefits of guideline adher-

ence by predicting stroke and bleed outcomes using treatment effects estimating on the

other ”test” half of our sample.

When considering strict CHADS2 adherence, we consider the counterfactual whereby

physicians treat all patients starting with the highest CHADS2 score and moving to lower

scores, stopping when the expected bleed rate equals the current observed bleed rate.

Finally, when considering status quo treatment decisions, we maintain treatment

decisions observed in our sample, and compare actual stroke and bleed rates to the

stroke and bleed rates predicted from applying our treatment effects estimated in the

training data to predict outcomes in the test data.

Results of these simulations are reported in Table 6. We first note that simulated

stroke and bleed rates based on estimated treatment effects match the observed rates in

the test data set extremely closely, providing some validation of the model results.

Next, holding bleeds constant at the rate observed under status quo treatment de-

cisions (as predicted by estimates in the training data), we investigate counterfactual

stroke rates under strict CHADS2 adherence and optimal strict guideline adherence. We

estimate that strict adherence to the CHADS2 score, treating all of the highest score

patients with warfarin, could decrease the observed stroke rate from 4.4% to 2.7%.

Adherence to the optimal strict guideline could reduce strokes more dramatically to

1.6%, almost a third of the observed stroke rate. These estimates suggest potentially

large gains to guideline improvements which optimally trade off stroke and bleed risk to

better tailor treatment decisions.
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6 Conclusion

This paper develops a new methodology for estimating heterogeneous returns to treat-

ment, applying machine learning to a model that accounts for selection on unobserv-

ables. This methodology can be applied for development of new guidelines that perform

substantially better than current guidelines or current observed treatment decisions in

counterfactual simulations.

The new estimates of treatment effects can outperform existing guidelines for two

reasons. The first is that these new estimates better identify variables that predict

treatment effect heterogeneity rather than simply predicting baseline risk (and assuming

treatment effects are proportional to risk). The second is that they can trade off bleed

and stroke treatment effects and target treatment to patients with the largest benefits

in terms of stroke reduction and smallest relative risk in terms of bleed increase.

Current efforts at applying machine learning to medical applications frequently fail

to account for selection into treatment on the basis of unobserved factors. Even with a

rich set of covariates observed from the patient’s medical record, we demonstrate that

failing to account for selection leads to systematic understatement of treatment effects

in our setting.

We apply our model to understand the tradeoffs between allowing physician discre-

tion and requiring strict guideline adherence. We observe that strict adherence to either

the CHADS2 or the optimal strict guideline could reduce stroke rates without increas-

ing the rate of bleed events. Of course, discretionary adherence to an optimal guideline

could outperform both of these approaches. In ongoing work, we explore the value of

discretion in the context of optimal guidelines.

Our selection model is identified by a jackknife instrumental variable approach which

relies on monotonicity assumptions for identification. Specifically, we assume that physi-

cians agree on the sorting of patients by suitability for treatment and differ only in their

treatment intensity. In ongoing work, we are exploring the validity of this assumption

by testing for monotonicity in subgroups identified by patient covariates. We can also

explore relaxations of this assumption by allowing the selection function to vary across

physician groups.

Our estimation also makes use of functional form restrictions for tractability of es-

timation, and these could also contribute to identification. While in principle, non-

parametric identification is possible, even in our large sample of patients we do not

have sufficient power for a completely nonparametric approach. However, in ongoing

work, we are testing the impact of relaxing these functional form assumptions including
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additive separability of the instrument and uniformity of the error term.
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7 Tables and Figures

Figure 1: Trends in warfarin prescription rates over time by CHADS2 score

Notes: this figure plots rates of warfarin prescription by CHADS2 score over time. CHADS2
scores below 2 predict low stroke risk, and CHADS2 scores of 2 or greater predicted elevated
risk of stroke. Data is on 400,000 patients with atrial fibrillation treated by the Veterans Health
Administration.
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Figure 2: Diffusion of CHADS2 score over time

Notes: This figure plots rates of CHADS2 adoption over time. The red series displays the fraction
of patients treated by a physician who has ever mentioned the CHADS2 score in his note. The
blue series displays the fraction of patients for whom the CHADS2 score is mentioned in the
note associated with his own visit for atrial fibrillation.

Figure 3: Impact of CHADS2 adoption on warfarin prescription rates:
Comparison of high score to low score patients

Notes: This figure plots coefficient estimates from a modified version of equation 1. The re-
gression controls for year-month fixed effects, doctor fixed effects, patient covariates, and year
relative to first mention of CHADS2 adoption. The plotted coefficients are the interaction of
relative year fixed effects and a dummy variable for patient CHADS2 score of 2 or greater. The
plot shows how prescription patterns change for high CHADS2 score patients relative to low
score patients following their doctor’s first mention of the CHADS2 guidelines. Year 0 is the
year of first CHADS2 mention. 95% confidence interval is shown in grey. Standard errors are
clustered at the physician level.
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Figure 4: Estimates of stroke average treatment effect by decile of stroke risk

Notes: This figure plots estimates of average stroke treatment effects (ATE) by decile of predicted
stroke risk absent treatment. We report three different estimation strategies for stroke ATE.
First, we report estimates from our selection model outline in the paper using green boxes.
Next, we plot estimates assuming warfarin causes a 60% reduction in stroke risk following the
logic of the medical CHADS2 guidelines using red triangles. Finally, we report estimates of
stroke treatment effects estimated using LASSO results that do not account for selection on
unobservables using blue circles.
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Figure 5: Estimates of bleed average treatment effect by decile of bleed risk

Notes: This figure plots estimates of average bleed treatment effects (ATE) by decile of predicted
bleed risk absent treatment. We report three different estimation strategies for bleed ATE. First,
we report estimates from our selection model outline in the paper using blue. Next, we plot
estimates assuming warfarin causes a 60% reduction in stroke risk following the logic of the
medical CHADS2 guidelines using red. Finally, we report estimates of stroke treatment effects
estimated using LASSO results that do not account for selection on unobservables using green.

Table 1: CHADS2 score guidelines

Notes: This table describes the CHADS2 score used to assess stroke risk among patients with
atrial fibrillation. It also describes anticoagulation guidelines based on this risk score.
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Table 2: Summary statistics by CHADS2 score

Notes: This table summarizes the average stroke rate, bleed rate, and warfarin prescription rate
by CHADS2 score in our sample.

Table 3: Balance test: Regressions of patient characteristics on quintiles of IV

 

Female Age Hispanic 
Past Past 

Hypertension Diabetes CHF 
Stroke Bleed 

Quintile 2 0.69 0.13 1.15 1.46 0.21 0.28 -0.35 0.13 

Quintile 3 0.52 0.11 -0.45 0.16 2.03 0.94 -0.24 1.16 

Quintile 4 0.51 0.64 0.38 -0.66 -0.74 2.13 0.72 -0.44

Quintile 5 -0.94 -0.24 -0.15 0.02 0.87 1.29 -0.75 0.73

Notes: This table reports regression results and standard errors (in parentheses) from eight
separate regressions. The independent variable of interest is residual variation in patient charac-
teristics (e.g. female, age, hispanic, etc.) after partialling out the clinic by year fixed effects and
day of week by hour of day fixed effects. Independent variables are a series of dummy variables
for each quintile of physician prescribing propensity.

Table 4: Estimated average treatment effects by patient CHADS2 score

Notes: This table reports the average treatment effects from our machine learning model with
selection correction, for in sample patients with each CHADS2 score.
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Table 5: LASSO variables that predict stroke treatment effects

Notes: This table reports the variables that predict treatment effects for stroke outcomes in our
LASSO estimation with selection correction.

Table 6: LASSO variables that predict | stroke | −bleed treatment effects

Notes: This table reports the variables that predict treatment effects for stroke plus bleed
outcomes in our LASSO estimation with selection correction.
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Table 7: Simulated counterfactual treatment decisions

Notes: Column 1 reports the observed rates of warfarin prescription, stroke and bleed in our
testing sample. Column 2 uses the observed prescription decisions to estimate the stroke and
bleed rate in the testing sample, based on the model estimated in the training sample. Column
3 simulates outcomes if warfarin were assigned to highest CHADS2 score patients first, until the
estimated bleed rate equals the observed bleed rate. Column 4 simulates outcomes if warfarin
were assigned to patients according to the optimal strict guideline that minimizes strokes while
holding the bleed rate at the current levels.
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A Empirical Bayes Jackknife Instrument

Suppose Yidt ∼i.i.d Bernoulli(xidβ + δc + θµd · xid + pdt). Note that we can also rewrite

this assumption as Yidt = xidβ + δc + θµd · xid + pdt + eidt where E(eidt|xdt, δc, pdt) = 0

and eidt = 1− (xidβ + δc + pdt) with probability xidβ + δc + pdt and −(xidβ + δc + pdt)

with probability 1− (xidβ + δc + pdt). Note that µd are doctor-level observables. When

we regress outcomes on Warfarin use, we include as instruments our estimates of pdt and

θµd · xid and we include as controls clinic fixed effects as well as all the xid. We assume

further that eidt are uncorrelated across time or across different physicians (in other

words, conditional on the stroke probability at a given doctor time, and conditional on

covariates, the fact that a given patient happens to have a stroke at time s has no further

bearing on whether some other patient has a stroke at time t).

Assume that Covd(pd(t+s), pdt) = σps where the subscript d denotes the empirical

covariance of these parameters across doctors. We can consistently estimate β in a fixed

effects regression of Yid on xid and fixed effects for pdt. I assume below that β is precisely

estimated so we can ignore any noise in β̂. I will however allow for the possibility of

imprecisely estimated clinic fixed effects. Define: Ỹidt ≡ Yidt − xidβ − θµd · xid =

δc+pdt+eidt. I assume without loss of generality that the mean of pdt within each clinic

is 0.

If we estimate this regression by OLS, then our estimates of pdt will be given by:

p̂dt = 1
Ndt

∑
i∈d(t)(Ỹidt − Ȳc) where d(t) denotes the set of doctor d’s patients at time t

and Ȳc = 1
Nc

∑
i∈c Ỹidt. Note that we can write this as:

p̂dt =
1

Ndt

∑
i∈d(t)

(Ỹidt − Ȳc)

=
1

Ndt

∑
i∈d(t)

(δc + pdt + eidt − (δc +
1

Nc

∑
i∈c

eidt))

= pdt +
1

Ndt

∑
i∈d(t)

(eidt − ēc) (7)

where ēc = 1
Nc

∑
i∈c eidt.

In this model, we want to construct the best linear unbiased estimator of pdt given

p̂d(−t) where p̂d(−t) = (p̂d1, ..., p̂d(t−1)). We write this estimator as:

p̂dt =

t−1∑
s=1

ψs(N1, ..., Nt−1)p̂ds (8)
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The weights ψs in each period are allowed to vary flexibly with the number of observa-

tions observed in all periods (you might give less weight to a prior period because you

know that other periods are estimated with greater precision).

We will find ψs as the solution to the problem of minimizing:

ψ = arg min
{ψ1,...,ψ(t−1)}

∑
d

(
pdt − ψ0(Nd1, ..., Nd(t−1))−

t−1∑
s=1

ψs(Nd1, ..., Nd(t−1))p̂ds

)2

(9)

As in Chetty et. al., the resulting coefficients ψ are equivalent to those obtained from

an OLS regression of p̂dt on p̂d(−t) identified using across doctor variation. If we observed

a large number of doctors for every possible set of Nd = {Nd1, ..., Nd(t−1)}, then we could

run this regression to recover the relevant coefficients. In lieu of that, we can make use

of the underlying structural assumptions in the model to compute the regression coeffi-

cients. These are given by ψ = Σ−1p γ where γ = (Covd(pdt, p̂d1|Nd), ..., Covd(pdt, p̂d(t−1)|Nd))
′

and Σp is the across-doctor covariance matrix of p̂d(−t) (again conditional on Nd). The

subscript d is used to indicate that this covariance is empirical covariance across doctors

as opposed to the covariance of the random variables. This distinction will be important

below for the variance terms (for example, the across doctor variance of pdt is positive,

whereas the variance of the “random variable” pdt is 0 since pdt is a constant).

Firstly, note that for t 6= s, Covd(pdt, p̂ds|Ndt, t) = Ed(pdtp̂ds|Ndt, t)−Ed(pdt|Ndt, t)Ed(p̂ds|Ndt, t) =

σp(t−s). This quantity does not depend on Ndt, and it only depends on t − s, not t or

s individually. We estimate this using the covariance of all Ỹidt and p̂ds for all t and s

that are the appropriate number of years apart and for which doctor d has at least 2

observations in year t. I denote this covariance by Covi(Ỹidt, p̂ds). Let Nt−s denote the

number of patients whose doctors have at least 2 observations in the current year and

at least 1 observation t− s years earlier. Then we have:

Covi(Ỹidt, p̂ds) = Ei(Ỹidtp̂ds)− Ei(Ỹidt)Ei(p̂ds)

= Ei((δc + pdt + eidt)(pds − ēc +
1

Nds

∑
j∈d(s)

ejds))− Ei(Ỹidt)Ei(p̂ds)

= Ei((δc + pdt + eidt)(pds − ēc +
1

Nds

∑
j∈d(s)

ejds))− Ei(Ỹidt)Ei(p̂ds)

= Covi(pdt, pds)− Ei(eidt, ēc)

= Covi(pdt, pds)−
1

Nt−s

∑
i

1

Nc(i)
V ar(ejdt) (10)

where the fourth line follows since eidt and eids are independent by assumption and
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so Ei(eidteids) = 0. Note further that Covi(pdt, pds) →p σp(t−s). Let êidt denote the

residuals from a regression of Ỹidt on doctor-time fixed effects. We can estimate the

second term using:

1

Nt−s

∑
i

1

Nc(i)

Ndt(j)

Ndt(j) − 1
ê2jdt →p

1

Nt−s

∑
i

1

Nc(i)

Ndt(j)

Ndt(j) − 1
V ar(êjdt) =

1

Nt−s

∑
i

1

Nc(i)

Ndt(j)

Ndt(j) − 1

(Ndt(j) − 2

Ndt(j)

)
V ar(ejdt) +

1

N2
dt(j)

∑
k∈d(t)

V ar(ekdt)

 =

1

Nt−s

∑
i

1

Nc(i)

(Ndt(j) − 2

Ndt(j) − 1

)
V ar(ejdt) +

1

Ndt(j)(Ndt(j) − 1)

∑
k∈d(t)

V ar(ekdt)

 =

1

Nt−s

∑
i

1

Nc(i)

((
Ndt(j) − 2

Ndt(j) − 1

)
V ar(ejdt) +

1

Ndt(j) − 1
V ar(ejdt)

)
=

1

Nt−s

∑
i

1

Nc(i)
V ar(ejdt) (11)

The case of the current year requires special consideration. We want to know

Cov(pdt, p̂
JK
idt ) where p̂JKidt is the jackknife estimate which we compute either using only

prior observations or as a leave one out estimate. Let t(i) denote the specific date on

which individual i was treated and let Nidt denote the number of patients tested prior

to patient i by doctor d in period t. In that case:

Covd(pdt, p̂
JK
idt ) = Covd(pdt,

1

Nidt

∑
t(j)<t(i)

Ỹjdt)

= Covd(pdt,
1

Nidt

∑
t(j)<t(i)

pdt + δc + ejdt)

= V ard(pdt) (12)

We estimate this term below.

The above derivation tells us the off-diagonal terms of Σp as well as the vector γ.

The diagonal terms are given by V ard(p̂dt|Nd) = V ard(p̂dt|Ndt) since the variance of

the estimated p̂dt depends only on the number of observations in that period. If we

observed enough doctors in every period with each possible number of observations, we

could compute this variance empirically. Since we do not, we again rely on structure to

relate the variance for eachNd to a single underlying across patient variance. Specifically,
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we impose that the mean and variance variance of true pdt across doctors is the same

for all N - V ard,N (pdt) = V ard(pdt) and Ed,N (pdt) = Ed(pdt).

For each value of Ndt = N , let DNt denote the set of patients belonging to doctors

with exactly N patients at time t and let |DNt| denote the number of such patients.

Further, let Nc(i),DNt
denote the number of patients in clinic c belonging to DNt. Then

we have:

V ari(p̂dt|Ndt, t) =p

V ard(pdt|Ndt, t) + V ari

−ēc +
1

Ndt

∑
i∈d(t)

eidt|Ndt, t


= V ard(pdt|Ndt, t) +

1

|DNt|
∑
i∈DNt

−ēc(i) +
1

Ndt(i)

∑
j∈dt(i)

ejdt

2

→p V ard(pdt|Ndt, t)

+
1

|DNt|
∑
i∈DNt

 1

N2
c(i)

∑
j∈c(i)

e2jtd +
1

N2
dt(i)

∑
j∈dt(i)

e2jdt −
2

Nc(i)Ndt(i)

∑
j∈dt(i)

e2jdt


= V ard(pdt|Ndt, t) +

1

|DNt|
∑
i∈DNt

(
Nc(i),DNt

N2
c(i)

e2itd +
1

Ndt(i)
e2idt −

2

Nc(i)
e2idt

)
= V ard(pdt|Ndt, t)

+
1

|DNt|
∑
i∈DNt

(
Nc(i),DNt

Ndt(i) +N2
c(i) − 2Nc(i)Ndt(i)

N2
c(i)Ndt(i)

e2idt

)
(13)

Analogous reasoning to equation 11 shows that we can compute the parenthetical term

by substituting:
Ndt(i)

Ndtij)−1
ê2idt for e2idt when Ndt > 1.

With sufficient data, we could estimate V ard(p̂dt|Ndt, t) for every (Ndt, t) pair and use

this to determine V ard(pdt|Ndt, t). Note however that this requires we observe enough

physicians at that pair that the law of large numbers applies in the above derivation. Be-

cause this is not true for many (Ndt, t) pairs, we instead assume that V ard(pdt|Ndt, t) =

V ard(pdt), a constant. We additionally assume that V ard(p̂dt|Ndt, t) = V ard(p̂dt|Ndt)

which follows if, for example, we assume that the distribution of eidt is the same in each

period.

We then proceed as follows. First, we estimate V ard(p̂dt|Ndt, t) for all (Ndt, t) pairs

where we observe at least 20 doctors with 2 observations. Second, we estimate V ard(pdt)

as the physician weighted average of these estimates. For each such pair, our estimate
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is given by:

V ard(pdt) = V ard(p̂dt|Ndt, t)−
1

|DNt|
∑
i∈DNt

(
Nc(i),DNt

Ndt(i) +N2
c(i) − 2Nc(i)Ndt(i)

N2
c(i)(Ndt(i) − 1)

ê2idt

)
(14)

Finally, we compute V ard(p̂dt|Ndt) using the empirical distribution - we bin cases of

Ndt > 5 (3% of all doctors - 2/3 of which have 6 or 7 observations) into a single bin -

for the very small number of doctor-times with more than 5 doctors, this will tend to

overstate the noise in the variance and thus understate the weight they should receive.

Finally, consider the constant term ψ0(Nd1, ..., Nd(t−1)). This term is given by:

ψ0(Nd1, ..., Nd(t−1)) = Ed(pdt −
t−1∑
s=1

ψs(Nd1, ..., Nd(t−1))p̂ds)

= p̄t (15)

since Ed(p̂ds) = 0 (by construction, since we partial out time fixed effects when we define

Ỹidt). To deal with this term we can just include time fixed effects.
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